
SleepEEGpy: a Python-based software integration package to organize
preprocessing, analysis, and visualization of sleep EEG data

Rotem Falach a,1 , Gennadiy Belonosov a,1, Flavio Jean Schmidig a,b , Maya Aderka a ,
Vladislav Zhelezniakov b , Revital Shani-Hershkovich c, Ella Bar b,d, Yuval Nir a,b,c,e,f,*

a Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
b Department of Physiology and Pharmacology, Faculty of Medical and Health Sciences, Tel Aviv University, Tel Aviv, Israel
c The Sieratzki-Sagol Center for Sleep Medicine, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel
d Department of Brain Sciences, Weizmann Institute of Science, Rehovot, Israel
e Department of Biomedical Engineering, Faculty of Engineering, Tel Aviv University, Tel Aviv, Israel
f Sagol Brain Institute, Tel Aviv Sourasky Medical Center, Tel Aviv, Israel

A R T I C L E I N F O

Keywords:
Electroencephalography (EEG)
sleep
Hypnogram
Graphoelements
Software
Python
Open source

A B S T R A C T

Sleep research uses electroencephalography (EEG) to infer brain activity in health and disease. Beyond standard
sleep scoring, there is growing interest in advanced EEG analysis that requires extensive preprocessing to
improve the signal-to-noise ratio and specialized analysis algorithms. While many EEG software packages exist,
sleep research has unique needs (e.g., specific artifacts, event detection). Currently, sleep investigators use
different libraries for specific tasks in a ‘fragmented’ configuration that is inefficient, prone to errors, and re
quires the learning of multiple software environments. This complexity creates a barrier for beginners. Here, we
present SleepEEGpy, an open-source Python package that simplifies sleep EEG preprocessing and analysis.
SleepEEGpy builds on MNE-Python, PyPREP, YASA, and SpecParam to offer an all-in-one, beginner-friendly
package for comprehensive sleep EEG research, including (i) cleaning, (ii) independent component analysis, (iii)
sleep event detection, (iv) spectral feature analysis, and visualization tools. A dedicated dashboard provides an
overview to evaluate data and preprocessing, serving as an initial step prior to detailed analysis. We demonstrate
SleepEEGpy’s functionalities using overnight high-density EEG data from healthy participants, revealing char
acteristic activity signatures typical of each vigilance state: alpha oscillations in wakefulness, spindles and slow
waves in NREM sleep, and theta activity in REM sleep. We hope that this software will be adopted and further
developed by the sleep research community, and constitute a useful entry point tool for beginners in sleep EEG
research.

1. Introduction

Electroencephalography (EEG) is the main tool in basic and clinically
oriented sleep research [1]. EEG is routinely used in conjunction with
electrooculography and electromyography to perform sleep scoring and
distinguish between vigilance states of wakefulness, rapid eye move
ment (REM) sleep, and non-REM sleep [2]. Sleep scoring is performed
either manually according to established standards [3] or, in recent
years, via automatic tools [4–6]. Beyond sleep scoring, there is increased
attention toward advanced EEG analysis that focuses on investigating
events occurring at specific times, frequencies, and scalp locations or in

estimated brain sources [7]. Examples of such sleep EEG analyses
include an association between sleep spindles and sleep-dependent
memory consolidation [8–13], regional differences in slow-wave activ
ity during development [14], changes in slow-wave-spindle coupling in
older age [15], and neural correlates of dreaming [16]. In clinical con
texts, advanced analysis that goes beyond sleep architecture reveals an
association between disrupted frontal slow waves and β-amyloid pa
thology in Alzheimer’s disease [17], altered central sleep spindles in
schizophrenia [18], and how epileptic seizures emerge from sleep os
cillations [19–21].

EEG data comprise a mixture of signals of interest from neuronal

* Corresponding author. Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel
E-mail address: ynir@tauex.tau.ac.il (Y. Nir).

1 These authors contributed equally to this work.

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

https://doi.org/10.1016/j.compbiomed.2025.110232
Received 23 October 2024; Received in revised form 14 April 2025; Accepted 16 April 2025

Computers in Biology and Medicine 192 (2025) 110232

Available online 26 April 2025
0010-4825/© 2025 The Authors. Published by Elsevier Ltd. This is an open access article under the CC BY-NC license (http://creativecommons.org/licenses/by-
nc/4.0/).

origin and noise arising from both physiological and extrinsic sources
[22]. Typically, preprocessing (e.g., filtering and artifact rejection) is
performed to improve the signal-to-noise ratio (SNR) of EEG signals
[23]. While EEG may be “better left alone” in event-related contexts
where noise can be reduced by trial averaging [24], it is crucial to
preprocess and clean the EEG signal when analyzing the continuous,
spontaneous brain activity observed during sleep. For example, many
artifacts, such as sweating or eye movements, are dominated by spectral
frequencies that overlap with slow-wave activity; hence, removing such
artifacts is often necessary to accurately characterize sleep homeostasis
as indexed by slow-wave activity [25].

Various established software packages exist for visualization, pre
processing, and analysis of EEG data [26]. Leading general-purpose EEG
software packages include open-source MATLAB-based Brainstorm
[27], EEGLAB [28], and FieldTrip [29], as well as Python-based
MNE-Python [30]. All of these are under continuous development and
have witnessed rapidly expanding interest in the scientific community
(Fig. 1a). In addition, PyLossless [31] provides a pipeline and a GUI for
continuous EEG preprocessing, focusing on automated artifact detec
tion. EEGLAB and Brainstorm, developed earlier, provide a graphical
user interface, whereas FieldTrip and MNE-Python are
scripting-oriented. Over the last decade, automatic preprocessing pipe
lines have been developed and are being increasingly used for rejecting
artifacts, problematic time intervals, and “bad” electrodes alongside
conventional visual annotation [32–41] (Fig. 1b).

Sleep EEG research has many specific preprocessing, analysis, and
visualization considerations compared with classic event-related po
tential (ERP) and resting-state EEG studies. For instance, different
intrinsic artifacts may be dominant (e.g., cardiac activity, muscle
twitches, and slow or rapid eye movements), whereas other common
artifacts during wakefulness, such as eye blinks, are mostly absent [42].
Moreover, sleep EEG activity is predominantly spontaneous and not
necessarily time-locked to external events, as in ERP studies. Therefore,
continuous data are usually not windowed into epochs. This approach
warrants preprocessing and visualization methods closer to the raw
data, in line with a recently proposed ‘lossless’ preprocessing concept
[43]. Additional considerations unique to sleep EEG analysis include
sleep-stage-based analyses, such as detecting specific events such as slow
waves and spindles, as well as examining spectral aspects and associated
scalp topography. Thus, specific features of sleep EEG present a need for
specific software tools tailored to these specific needs. Moreover, the
quantity and complexity of these steps can often be overwhelming for
beginners in the field.

Ideally, a complete sleep EEG software package should draw on the
advantages of both general-purpose tools (e.g., preprocessing, time-
frequency, and topography analyses) and specialized tools for sleep

research (e.g., integration with sleep scoring, advanced analyses per
sleep stage, and detection of specific sleep oscillations). At present, this
is often accomplished by combining multiple existing and custom-made
tools, leading to a “fragmented” configuration that can be inefficient,
prone to errors, and demanding in terms of learning curve. These issues
are an elevated entry barrier for new users and often lead to frustrating
initial encounters with sleep EEG data.

In the landscape of Python-based tools for sleep research, Wonambi,
Snooz Toolbox, Luna, PyLossless, and SleepEEGpy stand out as solutions
targeting different aspects of EEG data analysis. Wonambi and Snooz
Toolbox offer feature-rich graphical user interfaces (GUIs) that support
manual sleep scoring, automated artifact rejection, and event detection,
making them valuable for users who prefer interactive, visual work
flows. In this sense, they are comparable to EEGLAB in the MATLAB
ecosystem, providing a user-friendly environment with broad func
tionality accessible through a GUI. Luna, on the other hand, is a
command-line-based toolkit designed for high-throughput batch pro
cessing of large sleep datasets, with a strong focus on flexibility and
scalability for sleep signal analysis. In contrast, SleepEEGpy is designed
with a focus on simplicity, flexibility, scalability, and reproducibility,
following a pipeline-oriented approach that emphasizes automated
preprocessing, report generation, and advanced analysis. Much like
FieldTrip, SleepEEGpy offers a modular, script-based API, enabling re
searchers to work efficiently within Jupyter Notebooks while main
taining full control over each step of the analysis. This design not only
paves a standardized workflow for users but also promotes reproducible
research practices, which are critical in large-scale and collaborative
projects.

Here, we present SleepEEGpy, a package that integrates pre
processing, analysis, and visualization for general sleep EEG data. It is
designed to streamline workflows through a simple, script-based API,
providing flexibility for both beginners and experienced researchers. We
initially developed SleepEEGpy as a tool for new students in our lab to
work with EEG data of human sleep. It is meant to offer a user-friendly
introduction to sleep data analysis for users with little to no prior
experience with EEG, sleep, or programming. Geared for beginners, it is
not meant to replace the rich and complex functionalities of highly
developed packages that it is based on (e.g., MNE); rather, it facilitates
an entry point for newcomers in sleep EEG research. At the same time, its
standardized visualization allows more experienced users to quickly
assess the quality of the applied sleep-scoring, pre-processing, and
analysis of the sleep data and thus enables them to provide helpful
feedback and effectively mentor and supervise new users. SleepEEGpy is
based on the following Python packages: MNE [30], PyPREP [33], YASA
[44], and SpecParam [45] (formerly FOOOF). The choice of Python as
an open-source programming language leverages the benefits of its

Fig. 1. Citation dynamics of common general-purpose and automatic preprocessing EEG software. A noncumulative number of citations (y-axis) per year (x-
axis) for (a) four leading general-purpose EEG packages (EEGLAB, orange; Fieldtrip, green; Brainstorm, red; MNE-Python, blue) and (b) leading software packages
implementing automatic preprocessing of EEG data (PREP pipeline, blue; APP, orange; Autoreject, green; ADJUST, red; FASTER, purple; HAPPE, brown; rASRMatlab,
pink). Citations are based on the Scopus database (December 17, 2023).

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

2

many libraries, including extended machine learning ecosystems, broad
documentation, and a dynamic community. To support rapid learning,
SleepEEGpy includes example Jupyter notebooks demonstrating its
pipeline functions [46]. To contextualize SleepEEGpy within the
broader landscape of available tools, Table 1 presents a comparison of
several publicly available sleep EEG toolkits across a range of key fea
tures. Notably, SleepEEGpy is not meant to replace or improve the
packages it is built on. Its value primarily lies in simplifying getting
started with these packages by unifying them into one framework and by
reducing the functionality to the core necessities for the analysis of
general sleep EEG data. In this study, we aim to demonstrate how
SleepEEGpy simplifies complex sleep EEG analyses, supports standard
ized workflows, and enhances reproducibility in sleep research.

2. Methods

2.1. Overview

The SleepEEGpy pipeline (see Fig. 2 for a flowchart) is divided into
two sections: preprocessing and analysis. Section A (preprocessing) is
further divided into A1 (cleaning) and A2 (independent component
analysis, ICA), whereas section B (analysis) is further divided into B1
(events) and B2 (spectral). The preprocessing section aims to increase
the SNR by cleaning (e.g., filtering, rejecting bad electrodes or prob
lematic temporal intervals, with rejections done either manually or
automatically using MNE and PyPREP) and by regressing out noise
components (through an ICA). The analysis section focuses either on
specific sleep events (graphoelements such as sleep spindles, slow-
waves, or rapid eye movements) or power spectral decomposition per
formed for individual recordings or multiple datasets. The dashboard
and additional visualization tools allow a precise and sleep-tailored vi
sual assessment of the preprocessing and the analysis section. Together,
SleepEEGpy offers an integrated pipeline for cleaning, ICA, event
detection and analysis, spectral analysis, and visualization, as well as
integration with sleep scoring vectors (performed either a priori
manually or automatically via YASA).

2.2. Prerequisites: input data, software, and hardware

To utilize SleepEEGpy, input data must consist of non-segmented
(‘continuous’) EEG data in common formats supported by MNE-
Python, such as Brain Vision, Meta File Format (MFF), or European

Data Format (EDF). For sleep-stage-based functionality (both events and
spectral), an additional sleep scoring vector is required in the form of a
text file containing an integer per row representing different sleep stages
for each epoch. For example, the sleep module of the Visbrain package
provides an interface for sleep scoring that is well-suited and compatible
with SleepEEGpy. If this data is not provided, SleepEEGpy can perform
automatic sleep scoring using the YASA package. SleepEEGpy requires
Python version 3.9 or higher, with Python versions between 3.9 and
3.11 recommended. It is advised to install SleepEEGpy in a Python
virtual environment (using venv or conda) to avoid conflicts with other
packages. Installation of SleepEEGpy is straightforward, and in
structions are provided on the GitHub repository. Briefly, users should
set up a virtual environment, install the required Python dependencies,
and download the necessary notebooks to familiarize themselves with
the library’s functionalities. The repository also provides a quickstart
guide, including a notebook with an end-to-end example of dataset
retrieval, preprocessing, and analysis. Particularly for long overnight
(6–10h) high-density (128/256-channel) EEG sleep datasets, we highly
recommend at least 64 GB of rapid access memory (RAM), especially for
event detection tools, even when the sampling rate is not higher than
256 Hz.

2.3. Architecture and typical workflow

Each tool within the pipeline is organized independently and has a
corresponding Jupyter notebook. These notebooks serve as exemplars,
providing a detailed walkthrough of each tool’s functionality and of
fering step-by-step guidance to new users. More experienced users can
always re-organize, reuse, and combine different pipeline tools to sup
port their needs. Fig. 2 depicts a possible prototypic process flow of the
SleepEEGpy pipeline.

Section A: Preprocessing. The preprocessing section (Fig. 2A) is
divided into two tools: A1, cleaning, and A2, ICA. The dashboard offers a
convenient way of reviewing the quality of the applied preprocessing
steps. Furthermore, we provide a Jupyter notebook for the cleaning (A1)
that can be applied with minimal knowledge of sleep and without
further manual inputs. It uses default parameters for resampling,
filtering, automatic rejection of bad channels and epochs, and automatic
sleep-scoring. Naturally, default parameters will not result in ideal
preprocessing, which has to be evaluated carefully. However, it provides
a first-pass “low-entry” point for beginners to start exploring the pre
processing of sleep EEG and refine further via additional iterations.

Table 1
Comparison of SleepEEGpy with other sleep EEG analysis toolkits. The table presents a side-by-side overview of different features across SleepEEGpy and several
existing software tools for sleep EEG analysis.

Feature/Tool SleepEEGpy Wonambi Snooz
Toolbox

Luna PyLossless MNE EEGLAB FieldTrip

Platform Python Python Python Command line + R
& Python
extensions

Python Python MATLAB MATLAB

Interface Scripting GUI + scripting GUI GUI + scripting Scripting Scripting GUI + scripting Scripting
Sleep Scoring Automated via YASA Manual No Automated No No No No
Artifact

Handling
Automated via
PyPREP or manual
via MNE

Manual Automated Automated Advanced
auto-cleaning

Manual Automated +
manual

Automated +
manual

Event Detection Spindles, slow
waves, REMs via
YASA

Spindles, slow
waves

Spindles,
slow waves

Spindles, slow
waves

No No No No

Sleep Report Standardized
dashboard + pipeline
plots

Interactive GUI
+ CSV sleep stats

TSV sleep
stats

Console
summaries +
pipeline plots

No Basic plotting
functions

Basic plotting
functions

Basic plotting
functions

Scalability High Moderate Moderate Very high Moderate High Moderate High
Prior

Knowledge
Low Moderate Moderate High Low Moderate Low Moderate

Documentation Online docs +
Jupyter tutorials

Online docs Online docs Extensive online
docs + tutorials

Online docs Extensive
online docs +
tutorials

Online docs +
community

Online docs +
community

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

3

A1. Cleaning. The pipeline cleaning tool consists of the following
signal processing techniques: EEG resampling, filtering, re-referencing,
noisy channels and temporal intervals annotation, and interpolation of
the annotated channels. Resampling is often a necessary step in sleep
EEG preprocessing because overnight recordings may require tens of
gigabytes of RAM. Filters and data annotations provide a way to improve
the SNR by removing artifacts from the signal. For example, by applying
a notch filter to remove electrical line noise (50/60Hz) or by annotating
the intervals of movements to avoid their subsequent analysis. Slee
pEEGpy employs the same filtering methods as MNE, ensuring consis
tency with widely used EEG preprocessing standards. Default
parameters, along with their rationale, are presented below. Re-
referencing EEG data to the common average is typically used for
assessing topography distributions after interpolating noisy channels,
ensuring that the mean is not dominated by outliers. Since there is no
widely accepted standard for automatically detecting bad channels and
noisy epochs in sleep EEG research, the default approach is manual in
spection and tagging. However, users can opt for automatic cleaning
algorithms tested on our example sleep datasets or combine both
methods. Automatic bad channel detection is based on PyPREP, which
uses RANSAC, while noisy epoch identification follows MNE’s approach,
relying on peak-to-peak amplitude thresholds.

A2. ICA. The ICA tool is MNE-based and consists of EEG signal
decomposition, selection of artificial components based on a data
browser and components’ topographies, and subsequent EEG signal
reconstruction after regressing out the artificial components. EEG, and
sleep EEG specifically, contains noise sources unrelated to brain activity.
We can identify and to some extent separate, the noise from the neuronal
signal. For example, physiological noise (e.g., electrocardiograph,
sweating, rolling eye movements) or external noise (e.g., 50/60Hz line
noise) can often be reliably identified based on the components’ to
pographies and time series. Applying ICA is optional because there are
advantages and disadvantages in removing or keeping some compo
nents, depending on the subsequent analysis and the focus of the

investigation. For example, eye movement-related potentials during
sleep may mask neuronal activities and be chosen to be removed in some
contexts; however, in other studies, the research question may require
their detection [47]. Most sleep EEG studies do not employ ICA and
prefer to discard entire 20s/30s segments based on manual identifica
tion given the rich, long datasets. However, a disadvantage of this
approach is that it may limit artifact identification to the few channels
used for sleep scoring [48].

Default parameters. By default, the parameters for preprocessing
and visualization are set as follows:

● Band-pass filter: the default is high-pass (but not low-pass) filtering
of the data with a cutoff of 0.3 Hz. As defined by MNE, the default
filter is a zero-phase (non-causal) finite impulse response (FIR) filter
using the window method with the hamming window. Stricter high-
pass filtering, e.g., 0.75 Hz, may be preferable in the presence of
high-amplitude sweat artifacts [48].

● Notch filter: By default, we set 50 Hz and its harmonics to be filtered
using a notch filter. Like the band-pass filter, the notch filter is a zero-
phase FIR filter with a hamming window and 1 Hz width of the
transition band.

● ICA: The default ICA algorithm, based on MNE’s implementation, is
set to FastICA [49], which performs a contrast-based optimization to
maximize non-Gaussianity and extract statistically independent
components. Alternatively, users can switch to Infomax [50] which
applies a neural-network-inspired gradient-based learning rule, or
Picard [51], which leverages a quasi-Newton optimization approach
with improved convergence properties. The number of
largest-variance PCA components passed to the ICA algorithm is set
to 30 by default. Following MNE’s recommendation, the signal is by
default high-pass filtered at 1.0 Hz before fitting to reduce the ICA
algorithm sensitivity to low-frequency drifts.

The rationale behind these default parameters is to provide a

Fig. 2. Flowchart of the SleepEEGpy pipeline. Section A (preprocessing) is divided into A1 (cleaning) and A2 (ICA). The cleaning tool (A1) handles operations
such as resampling, filtering, and the annotation of noisy electrodes or epochs, with the option to interpolate affected channels. The ICA tool (A2) provides
component visualization and rejection. A dedicated dashboard (Fig. 3) offers a visual summary of preprocessing. Section B (analysis) comprises B1 (detection of sleep
events like spindles or slow waves) and B2 (spectral analysis for single or multiple datasets). Arrows indicate transitions between the pipeline tools. Overlapping
circles and multiple arrows illustrate the merging of multiple single-subject analyses into a single group-level analysis, while text blocks represent key outputs, with
visualizations highlighted. Abbreviations: PSD, power spectral density; TFR, time-frequency representation.

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

4

balanced, “ready-to-use” setup for general sleep EEG analyses. Our
choices mirror widely adopted practices in the EEG research community
(e.g., MNE defaults). Advanced users with specific research questions or
data characteristics, such as very slow oscillations in pathological pop
ulations, are encouraged to modify these defaults accordingly.

Dashboard: summary and visualization of preprocessing. To
provide a visual summary and overview of sleep EEG data preprocess
ing, we created a dashboard (Fig. 3). It accepts as an input the output of
either A1 or A2 (Fig. 2A). Hence, the dashboard can visualize cleaned
EEG recordings with or without excluded ICA components. Further
more, one can optionally refine the visualization by adding a sleep-
scoring vector. Based on the input, all visualizations in the dashboard
are then computed with or without ICA or sleep scoring. As a pre-
configured visualization tool, it displays the characteristic sleep prop
erties of the EEG recording, such that the data quality and SNR of that
sleep dataset can be estimated relatively quickly from a “bird’s eye”
view. The dashboard includes four sections: general preprocessing in
formation (Fig. 3a), topographical power distribution of key oscillations
in specific vigilance states (Fig. 3b), time-frequency decompositions
(spectrogram, computed using the Multitaper method [52]) super
imposed with the corresponding hypnogram, once before (Fig. 3c) and
once after (Fig. 3d) the rejection of bad time intervals (and after ICA, if
used), and power spectral density (PSD) plots before and after the pre
processing (Fig. 3e and f). A full description of the dashboard results for
representative data of overnight sleep in a healthy subject is detailed
below in the Results section.

Section B: Analysis. The analysis section (Fig. 2B) is divided into
two tools: B1, event-based analysis, and B2, spectrum-based analysis. B1
is mainly based on YASA and B2 is based on MNE and SpecParam. Here
we describe the main functionalities; for fine-tuning of additional pa
rameters, it is best to refer to the documentation of the original package.
The major advantage here is that SleepEEGpy offers the event- and
spectrum-based analysis of sleep EEG within the same framework as the
preprocessing and thus is easier to get started for new users. Neverthe
less, if one is already acquainted with YASA, employing the package
directly might be more convenient than submitting the parameters to
YASA through SleepEEGpy.

B1. Event detection and analysis tools. Event-based tools in the
SleepEEGpy pipeline are used to detect and characterize three different
sleep graphoelements, namely sleep spindles, slow waves, and rapid eye
movements. Each tool takes an MNE-readable EEG file and the sleep
scoring vector as input. The input EEG file is typically the output of the
preprocessing section, but this is not mandatory. The detection methods
of the event-based tools are completely based on YASA detection algo
rithms [44] and allow the same input parameters. The output of the
detection algorithm provides features of the detected events (for
example, number of events, amplitude/frequency characteristics of
sleep spindles), as well as the average time-frequency representation
averaged per channel across the detected events. The associated visu
alizations (as seen in Fig. 4) include average event time-course plots,
topographical distributions of the events’ features, and time-frequency
representations.

Sleep spindles are detected using YASA’s algorithm. The algorithm
is based on Lacourse et al. [53] and is similar to our previous work [54].
In brief, detection is performed by the algorithm using a combination of
different thresholds (relative sigma power, root mean square, and cor
relation) separately for the broadband (by default 1–30 Hz) and
sigma-filtered (by default 12–15 Hz) EEG signals. Detection signals are
resampled to the original time vector of the EEG data using cubic
interpolation to facilitate better precision for spindle start time, end
time, and duration. The relative sigma power (relative to the total power
in the broadband frequency) is computed using a short-term Fourier
transform. Each spindle’s median frequency and absolute power are
computed using the Hilbert transform. Additional spindle properties are
computed (e.g., symmetry index) as suggested in Ref. [55]. Detected
events with a duration within the range of a prototypical spindle are

kept for subsequent analysis (default duration is 0.5–2 s). Finally, an
isolation forest algorithm is optionally applied to reject outliers. The
EEG signals of the detected spindles can be extracted with a corre
sponding function, and the properties of the spindles can be accessed
through a summary Pandas dataframe.

Slow waves are detected via YASA’s algorithm, which is based on a
study by Massimini and colleagues [56] and similar to our own previous
work [57]. In brief, the EEG signal is band-pass filtered in the default
range of 0.3–1.5 Hz using an FIR filter with a transition band of 0.2 Hz.
Next, negative peaks in the filtered signal with an amplitude of [− 40 to
− 200] uV are detected, as well as all positive peaks with a default
amplitude of [10 to 150] uV. For each negative peak (slow wave trough),
the nearest positive peak is found, and several metrics are computed,
such as the peak-to-peak amplitude, durations of the negative and pos
itive phases, and frequency. A set of logical thresholds, e.g., phase
duration, is applied to determine the true slow waves. A Pandas data
frame is created, where each row is a detected slow wave, and each
column represents a property of this slow wave. An optional automatic
outlier rejection is applied to further remove abnormal slow waves.
Similar to the spindle detection algorithm, the EEG signals of the
detected slow waves can be extracted.

The detected spindle and slow wave events can be further analyzed
using the average time-frequency representation (TFR). Either Morlet
wavelets [58] or discrete prolate spheroidal sequence (DPSS) tapers [59]
can be used for the TFR computation as implemented by MNE. For the
TRF computation of the detected events, we first extracted the EEG
signal with a user-defined duration (by default, − 1 to 1 s around the
central peak for spindles and negative peak for slow waves). Second, the
extracted events are used to compute the average TFR, where the TFR is
averaged over events in each channel and each sleep stage. Finally, the
average TFR is placed inside an MNE-based container (‘AverageTFR’). It
provides additional extensive data manipulation functionality and
various visualizations (e.g., Fig. 4b).

Rapid eye movements (REMs) are also detected using YASA’s al
gorithm. The algorithm uses the rapid eye movement detection method
based on left and right outer canthi (left: LOC, right: ROC) EOG data
proposed in Ref. [60]. In brief, the algorithm uses amplitude thresh
olding of the negative product of the LOC and ROC signals. The REM
peaks are detected based on the user-defined frequency range (defaults
to 0.5–5 Hz), amplitude threshold (defaults to min 50 and max 325 μV),
and REM duration (defaults to min 0.3 and max 1.2 s). Similar to spindle
and slow wave detection algorithms, the outliers of the detected REMs
can be removed using the isolation forest algorithm, and the summary
Pandas dataframe and their EEG signal can be extracted.

B2. Spectral tools. Spectral-based tools in the SleepEEGpy pipeline
include single recording or multiple dataset analyses. The single
recording spectral tool takes an MNE-readable EEG file as input, and the
sleep scoring vector (if not provided, can be automatically predicted by
the tool with YASA’s algorithm). The spectral tool for multiple dataset
analysis then takes multiple instances of the single recording tool as
input. The numeric output of both tools is PSDs calculated separately for
each sleep stage. The PSDs per sleep stage are computed using Welch’s
method [61] in the following way: first, the EEG signal is divided into
regions according to changes in sleep depth, i.e., at the end of the di
vision, there can be multiple segments for each sleep stage. Then, using
Welch’s method, PSDs are separately computed for each segment.
Finally, separately for each sleep stage, a weighted arithmetic mean
based on the length of a segment is applied to the PSDs, producing a
per-sleep-stage PSD. The PSD computation is based on the MNE’s Welch
function (psd_array_welch), accepts all the original parameters, and uses
the same defaults (e.g., the length of FFT and Welch’s segments are set to
256, the segments’ overlap is 0, the default window is the hamming
type). In addition, the multiple dataset spectral tool averages PSDs over
recordings. Finally, the computed PSDs per sleep stage are placed inside
MNE-based containers (‘SpectrumArray’) to preserve the rich
spectrum-related functionality of MNE.

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

5

(caption on next page)

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

6

PSD results can be visualized either in a “traditional” (power vs.
frequency) plot (as in Fig. 3e/f or Fig. 6a) or with corresponding scalp
topography distributions (as in Fig. 3b or Fig. 5). Additional manipu
lations and visualizations of the PSDs per sleep stage are available
through the MNE containers. In-depth spectral analysis can be con
ducted with SpecParam (formerly FOOOF) [45] (Fig. 6b). This analysis
improves the characterization of signals of interest by overcoming the
limitations of conventional narrowband analyses, e.g., misinterpretation
of physiological phenomena. This is accomplished by parameterizing
neural PSDs into periodic and aperiodic components. This algorithm can
identify periodic oscillatory parameters, including the center frequency,
power, and bandwidth. In addition, offset and exponent parameters can
be extracted for the aperiodic component.

Each spectral tool can be computed and viewed at the single
recording level (as in Fig. 3e/f) or across multiple datasets (Figs. 5 and 6)
recordings, where PSDs are averaged separately across multiple datasets
for each EEG electrode and frequency band. Finally, to allow additional
preprocessing flexibility and benefit from the interface with diverse
approaches, spectral tools can also accept an epoch-based signal anno
tated with sleep stages as an input (as in ERP studies) rather than a
‘continuous’ EEG signal typical for sleep studies.

2.4. EEG data

We illustrate SleepEEGpy functionalities by applying it to sleep re
cordings of 44 healthy, young adult participants (25 females, age 25.86
± 3.14 years (mean ± STD), ranging from 21 to 36 years) who

participated in a research study on sleep and memory consolidation. In
addition, we included one healthy older adult (male, age 68) who
participated in a sleep and neurodegeneration study (as part of the
control cohort). Written informed consent was obtained from each
participant. These studies were approved by the Medical Institutional
Review Board of the Tel Aviv Sourasky Medical Center. Participants did
not have any history of neuropsychiatric or sleep disorders. Each
participant arrived at the sleep lab around 21:00 and, after cognitive
testing, proceeded to undisturbed sleep (the data presented here). The
mean duration of the recording was 7:18:28 ± 0:36:20 (hours:minutes:
sec, mean ± STD). We collected polysomnographic data, including high-
density electroencephalogram (hd-EEG), EOG, EMG, and video, as
described in [13]. hd-EEG was recorded using a 256-channel (plus one
reference channel) hydrogel geodesic sensor net (Electrical Geodesics,
Inc. [EGI]). Signals were referenced to Cz, amplified using an anti
aliasing filter and an AC-coupled high input impedance amplifier
(NetAmps 300, EGI), and digitized at 1000 Hz. Before recording began,
after conductive gel application, all sensors’ electrode impedance was
confirmed to be at least below 50 kΩ.

2.5. Comparison with EEGLAB

To further ensure the consistency and validity of SleepEEGpy’s out
puts, we conducted a data-driven comparison with a widely used EEG
analysis tool, EEGLAB (Fig. 7). Specifically, we compared the topo
graphical distribution of key EEG frequency bands during distinct sleep
stages, using our publicly available nap dataset. We focused on four key

Fig. 3. Preprocessing assessment with the dashboard. Top, blue box: healthy young adult. Bottom, orange box: healthy older adult. a) Left: EEG net montage with
spatial distribution of the interpolated channels (in red); right: general information of the recording’s preprocessing. b) Topographical PSD distribution per sleep
stage in its characteristic frequency band (8–12 Hz for Wake, 12–15 Hz for N2, 1–4 Hz for N3, and 4–8 Hz for REM); subfigures c–f are based on the E101 electrode
(Pz); subfigures c) and d) present single-channel spectrograms of the recording (colored power distribution in logarithmic scale over time and frequency) overlapped
with a hypnogram (black line representing depth of sleep as a function of time). c) Spectrogram of the signal after filtering and bad channel interpolation. d)
Spectrogram after filtering, bad channel interpolation, bad data span rejection, and optionally, exclusion of artificial independent components (ICA). Subfigures e)
and f) present single-channel power spectral distribution (PSD) plots as a function of frequency, with lines representing different sleep stages: blue for Wake, orange
for N1, green for N2, red for N3, and purple for REM. The gray area on the left of the plots shows frequencies filtered by the high-pass filter. Note that the cleaning
steps yield clearer spectral characteristics, such as a more prominent alpha peak during wakefulness. e) PSD plot of the signal after filtering and bad channel
interpolation. f) PSD plot of the signal with additional bad data span rejection and, optionally, exclusion of artificial independent components. Panels g–l (within the
orange box) are equivalent to panels a–f but for the healthy older adult. Note that the older adult experiences multiple brief awakenings, visible as more frequent
transitions to Wake.

Fig. 4. Visualizations of the detected spindles. Overall, 48057 spindles were detected in 257 channels of 193min N2 sleep in a healthy young adult. (a) Average
signal over all detected spindles in all channels centered around the spindle peak. (b) Average time-frequency representation of detected spindles from channel E101
(Pz). (c) Average topographical distribution of spindle characteristics: amplitude (left), frequency (middle), and duration (right). Note the typical separation into
slower frontal spindles versus faster centroparietal spindles.

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

7

combinations also exist in the dashboard: alpha activity (8–12 Hz)
during wakefulness, sigma activity (12–15 Hz) during N2, delta activity
(0.5–4 Hz) during N3, and theta activity (4–8 Hz) during REM sleep.
Both pipelines were run with similar preprocessing parameters,
including bandpass filtering, bad channels interpolation, and common
average referencing, to ensure consistency across software environ
ments. The scalp topographies were then computed per frequency band
and sleep stage using identical time windows.

3. Results

To illustrate the functionality, typical workflow, specific tools, and
visualizations of the SleepEEGpy pipeline, we performed preprocessing
and analysis of overnight sleep EEG data obtained in 44 young, healthy
adults participating in a memory consolidation study (Methods). The
analysis was conducted using a structured sequence of Jupyter note
books, beginning with preprocessing and artifact rejection, followed by
event-based detection, and concluding with spectral analysis. Each step
is demonstrated using representative datasets before extending the
analysis to the full dataset, highlighting both individual case studies and

Fig. 5. The topographical distribution of PSD per frequency band and sleep stage averaged over 40 subjects. Each row represents a sleep stage, from top to
bottom: Wake, N1, N2, N3, and REM. Each column represents a frequency band, from left to right: Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12.5 Hz), Sigma (12–15
Hz), Beta (12.5–30 Hz). Percentages in brackets represent a fraction of the sleep stage signal from the overall data.

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

8

overall trends. The following sections will present results that showcase
the capabilities of SleepEEGpy, including automated cleaning, visuali
zation, and spectral and event-based analyses. This approach demon
strates how SleepEEGpy can be applied not only to overnight recordings
but also to other sleep studies, such as daytime naps or studies in clinical
populations. Similar applications can be used for any type of sleep
recording, such as a daytime nap or a study in clinical populations. In
this study, each dataset consisted of a ~7h undisturbed sleep hd-EEG
(256-channel, EGI) combined with polysomnography including EOG,
EMG, and video.

3.1. Section a preprocessing: cleaning and optional ICA

The first step in the pipeline is to perform cleaning (Fig. 2a) via
downsampling, filtering, visual annotation, and interpolation of noisy
electrodes, as well as identification and exclusion of noisy temporal
intervals from subsequent analysis. We illustrate this on one represen
tative dataset (27-year-old female). For the preprocessing, we down-
sampled the data to 250 Hz; and used a common average reference.
Additionally, we choose to perform ICA (see below). In terms of filtering,
we used a band-pass filter of 0.75–40 Hz, without applying a specific
notch filter.

Next, as part of the SleepEEGpy pipeline, we used an MNE-based data
browser to annotate bad channels and bad temporal intervals. Manual
inspection and annotation of raw signals were performed in the “but
terfly” view and complemented by PSD topography inspection to
finalize the exclusion of abnormal channels. In our example of a young
adult participant, 8.95 % of the channels were annotated as bad and
interpolated using MNE-based spherical spline interpolation [62].
Across the entire dataset (N = 44), 14.0 ± 4.6 % (mean ± STD) were
marked as “bad channels”, and four subjects with more than 25 % bad
channels were excluded, leaving N = 40 for subsequent analysis. Next,
we marked temporal intervals in the representative dataset as “bad”
(4.84 % of the data in the example, 5.3 ± 2.4 % across the entire N = 40
dataset). Next, sleep scoring was performed manually according to
established American Academy of Sleep Medicine (AASM) criteria (3) to
create a specific vector text file that could be fed to SleepEEGpy as input
for subsequent preprocessing and analysis (Methods). The other 39
datasets were sleep-scored automatically using YASA’s algorithm [44].
Lastly, we applied ICA to identify and remove components of the EEG
unrelated to brain activity. We chose to annotate and remove compo
nents associated with the electrocardiograph/heartbeat before pro
ceeding to the analysis. For the older adult example, we applied fully
automated cleaning using MNE and PyPREP, along with manual sleep
scoring.

Fig. 3 presents the dashboard, a visual summary after preprocessing.

The dashboard serves as an initial assessment tool for preprocessing
quality, allowing users to identify noise, detect patterns in sleep stages,
and evaluate spectral characteristics before detailed analysis. Here we
used a representative dataset of one young adult and one older adult and
plotted the activity at the Pz electrode. We created the dashboard to be a
helpful, standardized visualization to evaluate the quality of the applied
preprocessing. It includes the following subplots: general preprocessing
information (Fig. 3a), topography of selected frequency ranges (3b), TFR
with hypnogram before (3c) and after (3d) rejection of bad intervals and
interpolation of bad electrodes, PSD plots of vigilance state before (3e)
and after (3f) cleaning. To assess preprocessing effectiveness, users can
look for typical topographies, as seen in Fig. 3b, or compare Fig. 3e and f
to confirm noise removal while preserving expected spectral features,
such as the clear alpha peak in wakefulness, and the dominant low-
frequency power in N3 sleep.

Since the cleaning (no ICA was applied) was successful, the topo
graphic PSD maps of the dominant EEG rhythms for each vigilance state
(Fig. 3b) show A) Wakefulness (top left) is characterized by maximal
alpha (8–12 Hz) activity over the occipital lobe. B) In N2 sleep (top
right), sigma (12–15 Hz) activity predominates over the centroparietal
electrodes. C) In N3 sleep (bottom left), slow wave activity (<4 Hz) is
maximal over the frontal cortex, and D) REM sleep (bottom right) is
characterized by theta (4–8 Hz) activity with its signature scalp
topography.

Furthermore, the hypnogram (Fig. 3c and d) demonstrates a
“typical” time course of sleep/wake states. As expected, most bad and
rejected temporal intervals are associated with wake intervals where
locomotion and artifacts occur more readily (Fig. 3d, marked as vertical
white bars). The PSD after the preprocessing (Fig. 3f), compared to
before (Fig. 3e) shows expected signatures of vigilance states. Specif
ically, the slow-wave activity (SWA, power < 4Hz) is maximal in N3
sleep, lower in N2 sleep, lower in REM sleep, and lowest in wakefulness;
showing that sigma (spindle) activity (12–15 Hz) is dominant in N2 and
N3 sleep; highlighting alpha (8–12 Hz) peak in wakefulness, and diffuse
theta (4–8 Hz) activity in REM sleep. Note that some of these features do
not appear clearly before preprocessing (Fig. 3e, left). Fig. 3 also present
a dashboard from an older adult participant (bottom, orange box, panels
g–l), illustrating age-related differences in sleep architecture and EEG
characteristics. Compared to the representative young adult dataset, the
older adult’s data shows more frequent transitions between sleep stages
and increased wake after sleep onset (WASO, Fig. 3i and j). Additionally,
there is a noticeable reduction in frontal delta power during N3 sleep
(Fig. 3h–l). Theta power during REM sleep is also weaker compared to
the younger participant. Despite these differences, characteristic sleep-
stage patterns are still evident: alpha activity (8–12 Hz) dominates
during wakefulness although here it extends also to lower frequencies

Fig. 6. Group-average PSD plots. (a) PSDs from the E101 (Pz) electrode averaged over 40 overnight recordings. The PSDs were transformed to dB for visualization.
Percentages in the legend represent the fraction of a sleep stage signal from the overall signal. (b) Average PSD of the N2 stage parametrized with SpecParam. The
PSD values were log-transformed. Vertical green lines represent fitted peaks with central frequencies of ~8.06 and ~13.47 Hz, and their respective power above the
aperiodic component of ~0.74 and ~0.97 log(uV2/Hz). PSD, power spectral density.

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

9

(caption on next page)

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

10

below 8Hz (Fig. 3l), sigma (spindle) activity (12–15 Hz) appears during
N2 and N3 sleep, and theta activity (4–8 Hz) is present during REM
sleep, albeit with lower amplitude.

Thus, by comparing spectrograms and PSDs before and after clean
ing, the user can effectively form an initial impression of the data quality
and the effectiveness of the cleaning process (and whether additional
iterations may be needed). Overall, the “dashboard” provides a visual
summary of a specific dataset, its cleaning/preprocessing, and markers
attesting to its quality, which constitute a useful first step for the
investigator before proceeding to detailed analysis.

3.2. Section B, analysis: the event-based and spectral-based tools

3.2.1. B1: Sleep spindle detection
To illustrate the event analysis tools (B1), we applied the YASA-

based spindle detection in the N2 sleep of our representative dataset.
Spindle detection provides an event-based analysis tool for character
izing sleep microstructure, allowing researchers to quantify spindle
distribution and topography.

We used the default parameters of YASA, which include a 12–15 Hz
spindle frequency range, 1–30 Hz broadband range, spindle duration
between 0.5 and 2 s, and 500 ms as the minimal time interval for
detecting two distinct spindles. The detection thresholds for a single
spindle event were 0.2 relative power, 0.65 moving correlation, and 1.5
STDs above the mean of a moving root-mean-square of the sigma-
filtered signal. The signal was re-referenced to a common average
reference. With these default parameters, we detected 48,057 spindles
across all EEG channels, corresponding to an average of ~187 spindles
per channel. Given that the duration of N2 sleep in this dataset was 193
minutes, this reflects a detection rate of ~0.97 spindles/minute. This
relatively low rate is reasonable, given that all 257 channels were
included. Since spindles are mostly detected over midline scalp elec
trodes and some electrodes, such as lateral or facial electrodes, only have
marginal detections, their inclusion is bound to lower the average rate.
The average time course of the detected spindles aligned at the peak is
shown in Fig. 4a. Fig. 4b depicts the average time-frequency decompo
sition (spectrogram) representation of the Pz (E101) channel, showing a
slight decrease in spindle frequency from beginning to end. Fig. 4c
shows the topographical signatures of different spindle characteristics
(left, amplitude; middle, frequency; right, duration), revealing estab
lished phenomena such as the prevalence of slower (<13Hz) spindles in
frontal electrodes vs. fast (>13 Hz) spindles over centroparietal
electrodes.

3.2.2. B2: Spectral tool
We performed MNE-based spectral analysis for the entire dataset

separately for each sleep stage and frequency band (slow/delta, theta,
alpha, sigma, beta; see Methods). First, we reviewed and edited the
default MNE parameters to set FFT and hamming window length to 2048
samples and window overlap to 1024 samples.

The resulting topographical distributions of PSDs per frequency band
per sleep stage averaged over all 40 subjects are shown in Fig. 5 and
Table 2. In addition to typical activity signatures (described in Fig. 3b
above), additional data features can be viewed and assessed here. For
example, high-frequency beta activity is maximal during wakefulness;
by contrast, delta activity during wakefulness shows hotspots around
orbital electrodes due to saccades “injecting” power into this frequency
range.

Finally, we display the average PSD plot as a function of the sleep
stage across the entire dataset (N = 40) and apply parameterization to
the PSDs (Fig. 6). As observed in the representative dataset shown in the
“dashboard” (Fig. 3f), this plot reveals expected signatures of vigilance
states such as SWA gradient N3>N2, diffuse theta activity in N1 and
REM sleep, alpha activity in wakefulness, and maximal high-frequency
(>20 Hz) activity in wakefulness. In addition, a peak in sigma activity
was observed in the average PSD in N2/N3 sleep. This can also be
demonstrated by identifying the periodic component’s peak frequency
(~13.5 Hz) using SpecParam (Fig. 6b, rightmost vertical green line).

Comparison with EEGLAB. To assess the consistency of spectral
outputs across toolkits, we visually compared the topographic distri
butions of spectral power generated by SleepEEGpy with those obtained
using EEGLAB. Fig. 7 shows that the spatial patterns of EEG power in
alpha (wake), sigma (N2), delta (N3), and theta (REM sleep) bands are
highly similar between the two platforms. For example, both toolkits
revealed occipital alpha activity during wakefulness, centrofrontal
sigma and delta activity in N2 and N3, and widespread theta power in
REM sleep. Note that differences in absolute power scaling between
EEGLAB and SleepEEGpy likely reflect their respective approaches to
averaging across variable-length time segments: SleepEEGpy uses a
weighted average based on segment duration, while EEGLAB applies
equal averaging.

4. Discussion

SleepEEGpy is an accessible and user-friendly tool for beginners in
sleep EEG data analysis. It offers a comprehensive and user-friendly
solution to support sleep EEG research from start to end by providing
tools that enable preprocessing, analysis, and visualization of sleep EEG
data. By leveraging the MNE-Python library and incorporating features
from YASA, PyPREP, and SpecParam (formerly FOOOF), it combines the
advantages of general-purpose tools with those of specialized tools.
Researchers can benefit from various functionalities, including artifact
removal, ICA, event detection, and spectral analyses.

4.1. Simplifying and standardizing sleep EEG analysis

Developed as a streamlined introduction, SleepEEGpy facilitates the
learning curve for students and newcomers by unifying essential func
tionalities. New users should be able to run a standard pipeline without
having to worry about the compatibility of data structures, coding

Fig. 7. Comparison of spectral power topographies between EEGLAB and SleepEEGpy Topographic maps of EEG power in canonical frequency bands across
sleep stages, generated using EEGLAB (left column) and SleepEEGpy (right column), using the same nap dataset. Rows correspond to specific combinations of sleep
stage and frequency band: alpha (8–12 Hz) in wake, sigma (12–15 Hz) in N2, delta (0.5–4 Hz) in N3, and theta (4–8 Hz) in REM. All maps were computed after
identical preprocessing steps.

Table 2
EEG power across sleep stages. The first three columns represent the mean ± standard deviation of EEG power (μV2), averaged across three electrodes for each
region: frontal (E21, E22, E14), central (E9, E81, E186), and occipital (E118, E126, E127), calculated from all 40 subjects. The last three columns show the p-values
from independent t-tests comparing power between sleep stages.

Measure Wake NREM REM p(Wake vs NREM) p(Wake vs REM) p (NREM vs REM)

Occipital Alpha 12.67 ± 12.45 1.95 ± 1.24 1.86 ± 1.27 8.84e-07*** 7.44e-07*** 0.757
Frontal Delta 10.58 ± 9.00 67.53 ± 30.84 10.81 ± 5.53 1.62e-17*** 0.893 5.95e-18***
Central Sigma 0.86 ± 0.68 1.95 ± 1.24 0.55 ± 0.20 1.64e-10*** 0.006** 6.78e-16***
Frontal Theta 3.69 ± 2.56 67.53 ± 30.84 3.46 ± 1.55 4.02e-05*** 0.631 3.88e-07**

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

11

errors, and arbitrary parameter definitions. Therefore, they can focus on
understanding the general high-level steps of analyzing sleep data.
Furthermore, SleepEEGpy can be used for learning and teaching specific
steps. For example, the dashboard’s standardized visualization makes it
easy and fast to assess the quality of the preprocessing. Hence, it can
function as a useful tool to learn and improve manual preprocessing
steps such as annotating bad epochs and bad electrodes.

4.2. A robust and flexible solution for sleep EEG exploration

We demonstrated a typical workflow of SleepEEGpy with continuous
hd-EEG data from two healthy participants. With the dashboard (Fig. 3),
we summarized and assessed the quality of the preprocessing. The
minimal preprocessing included resampling, bandpass filtering, elec
trode interpolation, and epoch rejection. Finally, an ICA was applied to
regress out the components related to electrocardiography/heartbeat.
The processed data revealed typical EEG patterns for each vigilance
state, which are consistent with prior literature. For example, the
topographic distribution of power spectral density (PSD) for each vigi
lance state (wake, N2, N3, REM) mirrors established findings, such as
the dominance of occipital alpha rhythm (8–12 Hz) during wakefulness,
central sigma activity (12–15 Hz) in N2 sleep, frontal slow-wave activity
(<4 Hz) in N3, and theta activity (4–8 Hz) during REM sleep. These
results validate the preprocessing pipeline’s effectiveness and its align
ment with existing EEG research on sleep [63–65]. To showcase the
flexibility of SleepEEGpy, we applied the same workflow to a dataset
from an older adult. This participant displayed more frequent transitions
between sleep stages, increased WASO, reduced slow-wave sleep, frag
mented REM, and weaker frontal delta and theta power, consistent with
age-related changes in sleep [66,67]. SleepEEGpy effectively handled
both young and older adult datasets, demonstrating its robustness and
versatility for sleep research and clinical applications across diverse
populations. We further illustrated that with SleepEEGpy, it is possible
to reliably analyze events during sleep by detecting sleep spindles
(Fig. 4). Specifically, we demonstrated its ability to detect spindles with
typical frequency and topographical patterns. Slower spindles (<13 Hz)
were observed in frontal regions, while faster spindles (>13 Hz) were
found in centroparietal regions, which is consistent with findings in
existing literature [54,68,69]. In addition, the decrease in spindle fre
quency during towards the end of the event aligns with previous findings
[54]. Next, we presented group averages of the topographical distribu
tion of PSD per frequency band and sleep stage (Fig. 5, Table 2), high
lighting typical specific vigilance-state signatures activity patterns.
Finally, we separately inspected the average PSD for each vigilance
state, averaged across our participant cohort (Fig. 6), revealing clear
peaks in activity associated with specific sleep stages, such as the
characteristic sigma peak in N2/N3 sleep (~13.5 Hz). To further
demonstrate that SleepEEGpy produces reliable outputs consistent with
existing tools, we compared its output scalp topographies to those
computed with EEGLAB using the same sleep EEG dataset. The spectral
maps of key frequency bands across vigilance states (e.g., alpha in wake,
sigma in N2) were nearly identical across both platforms (Fig. 7), sup
porting the validity of SleepEEGpy’s spectral pipeline. These results
underscore the tool’s ability to capture nuanced spectral features across
different vigilance states and sleep stages, contributing valuable insights
into sleep dynamics. In summary, SleepEEGpy provides an easy way to
perform general analysis and visualization of raw sleep EEG data, as well
as overviews of group averages.

4.3. SleepEEGpy as an integrated solution beyond functionality of existing
tools

The main advantages of SleepEEGpy relative to other available
software tools are its simplicity and all-in-one functionality. Current
EEG software packages are either implemented in MATLAB and behind a
paywall [28,29,34–36,38,39], optimized for sleep EEG but restricted to

either preprocessing [48], sleep scoring [70], or specific analyses [44],
or based on Python but not necessarily optimized for sleep research
[30]. This often results in the need for researchers to combine multiple
software environments to work with sleep EEG data, which can
complicate the workflow. Thus, SleepEEGpy helps to address an unmet
need by providing a comprehensive package that goes beyond the
typical configuration in many labs and combines multiple software en
vironments to work with sleep EEG data. Its free open-source nature
ensures accessibility to students and sleep research labs. To complement
the discussion, an explicit comparison of core features across popular
EEG software tools is provided in Table 1. This overview highlights
SleepEEGpy’s unique balance of automation, scalability, and ease of use,
particularly its support for sleep-specific preprocessing, event detection,
and visualization in a single streamlined pipeline. Beyond traditional
sleep research, SleepEEGpy also holds potential for interdisciplinary
applications. Because it’s designed to work end-to-end, from raw data to
high quality figures, it can be easily adapted to other domains such as
cognitive neuroscience, psychiatry, and neuroengineering - anywhere
where sleep-related dynamics and EEG are relevant. For example, it
could support clinical studies investigating sleep disruptions in psychi
atric populations, research on cognitive performance following sleep
interventions, or experiments using wearable EEG devices in real-world
settings. By lowering the entry barrier for high-quality EEG analysis,
SleepEEGpy opens up opportunities for collaborations between
computational scientists, clinicians, educators, and behavioral
researchers.

In terms of features, SleepEEGpy enables semi-automated process
ing, offering an end-to-end pipeline for sleep EEG analysis. After pre
processing, the pipeline provides a standardized dashboard for dataset
validation before proceeding to further analysis. Moreover, built-in
spectral analysis tools allow users to examine data across multiple pa
tients in a single workflow, enhancing its applicability for large-scale
studies. Regarding usability, SleepEEGpy is fully open-source and
freely available, ensuring accessibility to researchers at all levels. It of
fers a complete sleep EEG processing pipeline, allowing beginners to
perform analyses with minimal setup using default parameters (e.g.,
filter type or spindle detection threshold). At the same time, the
framework is flexible, enabling experienced users to adjust settings or
integrate additional functionality as needed. By addressing these as
pects, SleepEEGpy offers a robust solution that simplifies sleep EEG
analysis while maintaining flexibility for advanced research.

In terms of performance, SleepEEGpy’s processing speed and effi
ciency are comparable to existing Python-based tools, such as YASA and
MNE, since it builds on established libraries. Unlike many existing tools
that rely on pre-segmented epochs, the pipeline processes raw contin
uous EEG data throughout. This approach, while computationally more
demanding, ensures a more consistent preprocessing workflow and
avoids artificial interruptions caused by segmentation. However, actual
performance may vary depending on the hardware used, especially with
high-density, long-duration sleep EEG recordings.

4.4. Ease of use

Getting started with SleepEEGpy requires only basic knowledge of
Python syntax and Jupyter notebooks. The pipeline is based primarily on
classes and their methods, and the most complex task an average user
might encounter is writing a ‘for’ loop to optimize their pipeline. Jupyter
notebooks are implemented for each stage of the pipeline, making the
tools nearly automatic with embedded explanations at each step. The
code repository and notebooks are available at https://github.com/Ni
rLab-TAU/sleepeegpy, where a dedicated notebook (the “complete
pipeline” notebook) enables users to download the example datasets and
replicate our results. SleepEEGpy is also accompanied by a webpage
providing detailed API documentation and published notebooks. The
documentation is built using Sphinx [71] and hosted on GitHub.
Example datasets, including a full-night and a nap recording from young

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

12

adults and a full-night recording from an older adult, can be found at
Zenodo [72]: 10.5281/zenodo.10362190. Additionally, the “complete
pipeline” notebook provides an end-to-end example of dataset retrieval,
preprocessing, and analysis.

4.5. Limitations and future directions

SleepEEGpy could be improved by including additional analysis
methods, for example, a module for statistical analysis (parametric and
non-parametric tests) or a module for source estimation, which would
broaden the scope of its functionality for advanced users. While the
current version supports various sleep data types, its data type
compatibility could also be further extended, particularly with the EEG-
BIDS data structure [73], to better accommodate the growing adoption
of this standardized format. We believe that the code availability and
free software licenses (SleepEEGpy is released under the MIT license)
allow the community to rapidly expand such functionalities.

Additionally, SleepEEGpy has the potential to be extended with more
functionality based on machine learning and deep learning algorithms
for prediction and classification tasks, such as identifying pathological
events during sleep [74] or discovering biomarkers for neuropsychiatric
disorders [75]. Recent advancements in these fields, including applica
tions in medical imaging, disease diagnosis, and physiological signal
analysis [76–81], highlight their potential for EEG research. In line with
these advancements, deep learning and complex network approaches
have shown promise in EEG-based brain state classification and neuro
logical research [82,83], while statistical feature selection techniques
improve EEG-based classification accuracy [84]. Additionally, advanced
simulation-based frameworks, such as Monte Carlo methods [85–88],
could be adapted to further refine EEG source modeling or artifact
detection in SleepEEGpy. By integrating these techniques, SleepEEGpy
could enhance sleep EEG analysis, providing more accurate and
personalized insights into sleep dynamics and neuropsychiatric
disorders.

An additional limitation is the required knowledge of MNE and YASA
for more advanced analyses. At present, if the analysis prompts for an
adjustment of a meta-parameter (e.g., spindle detection threshold or
specific bandpass filtering), the details are best described in the docu
mentation of MNE or YASA itself, which might be challenging for new
users. However, for a new user, the defaults should be sufficient to get to
know the processing of sleep EEG. This represents a trade-off between
user-friendliness and the flexibility offered by specialized tools. All these
limitations could be addressed with additional code and documentation.
Hence, we hope that this package will be further developed by the
growing community of sleep investigators committed to open science
and high-quality open-source software. With the increased use of Python
as the preferred programming language and its interface with machine-
learning tools, we envision SleepEEGpy as an ideal entry point to
become familiar with sleep EEG analysis.

5. Conclusion

SleepEEGpy provides a user-friendly and comprehensive framework
for sleep EEG analysis, integrating preprocessing, event detection, and
spectral analysis in a single pipeline. By leveraging existing Python-
based tools, it streamlines workflows for both novice and experienced
researchers, ensuring accessibility and flexibility. Our results demon
strate its ability to effectively process and analyze sleep EEG data across
different age groups, capturing key sleep dynamics and spectral features
consistent with prior literature. As an open-source package, SleepEEGpy
addresses the need for an all-in-one sleep EEG tool, with the potential for
further expansion through community contributions.

CRediT authorship contribution statement

Rotem Falach: Writing – review & editing, Writing – original draft,

Visualization, Software, Methodology, Investigation, Formal analysis,
Conceptualization. Gennadiy Belonosov: Writing – original draft,
Visualization, Validation, Software, Methodology, Investigation, Formal
analysis. Flavio Jean Schmidig: Writing – review & editing, Writing –
original draft, Validation, Methodology. Maya Aderka: Validation.
Vladislav Zhelezniakov: Validation, Methodology. Revital Shani-
Hershkovich: Validation, Methodology. Ella Bar: Data curation. Yuval
Nir: Writing – review & editing, Writing – original draft, Supervision,
Resources, Project administration, Methodology, Investigation, Funding
acquisition, Conceptualization.

Ethical statement

1) This material is the authors’ own original work, which has not been
previously published elsewhere.

2) The paper is not currently being considered for publication
elsewhere.

3) The paper reflects the authors’ own research and analysis in a
truthful and complete manner.

4) The paper properly credits the meaningful contributions of co-
authors and co-researchers.

5) The results are appropriately placed in the context of prior and
existing research.

6) All sources used are properly disclosed (correct citation). Literally
copying of text must be indicated as such by using quotation marks
and giving proper reference.

7) All authors have been personally and actively involved in substantial
work leading to the paper, and will take public responsibility for its
content.

Declaration of competing interest

The authors declare that they have no known competing financial
interests or personal relationships that could have appeared to influence
the work reported in this paper.

Acknowledgments

We thank Gal Zatelman, May Eliyahu, Tomer Cohen, Hadar Nakar,
and Shir Frank for their assistance with data collection and sleep scoring;
Yarden Mezi for stabilizing the new version of the tool; and Dr. Noa Bar-
Ilan Regev for administrative assistance. This study was supported by
ERC-2019-CoG 864353 and a grant from the Aufzien Family Center for
the Prevention and Treatment of Parkinson’s Disease (Y.N.).

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.compbiomed.2025.110232.

References

[1] M.H. Kryger, T. Roth, Principles and Practice of Sleep Medicine, sixth ed., Elsevier -
Health Sciences Division, 2016.

[2] Y. Nir, L. de Lecea, Sleep and vigilance states: embracing spatiotemporal dynamics,
Neuron 111 (13) (2023) 1998–2011, https://doi.org/10.1016/j.
neuron.2023.04.012.

[3] R.B. Berry, R. Brooks, C. Gamaldo, S.M. Harding, R.M. Lloyd, S.F. Quan, M.
T. Troester, B.V. Vaughn, AASM scoring manual updates for 2017 (version 2.4),
J. Clin. Sleep Med. 13 (5) (2017) 665–666, https://doi.org/10.5664/jcsm.6576.

[4] L. Fiorillo, A. Puiatti, M. Papandrea, P.-L. Ratti, P. Favaro, C. Roth, P. Bargiotas, C.
L. Bassetti, F.D. Faraci, Automated sleep scoring: a review of the latest approaches,
Sleep Med. Rev. 48 (2019) 101204, https://doi.org/10.1016/j.smrv.2019.07.007.

[5] M. Gaiduk, Á. Serrano Alarcón, R. Seepold, N. Martínez Madrid, Current status and
prospects of automatic sleep stages scoring: review, Biomed. Eng. Lett. 13 (3)
(2023) 247–272, https://doi.org/10.1007/s13534-023-00299-3.

[6] E. Urtnasan, J.-U. Park, E.Y. Joo, K.-J. Lee, Deep convolutional recurrent model for
automatic scoring sleep stages based on single-lead ECG signal, Diagnostics 12 (5)
(2022) 1235, https://doi.org/10.3390/diagnostics12051235.

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

13

[7] R. Cox, J. Fell, Analyzing human sleep EEG: a methodological primer with code
implementation, Sleep Med. Rev. 54 (2020) 101353, https://doi.org/10.1016/j.
smrv.2020.101353.

[8] S. Gais, M. Mölle, K. Helms, J. Born, Learning-dependent increases in sleep spindle
density, J. Neurosci. 22 (15) (2002) 6830–6834, https://doi.org/10.1523/
JNEUROSCI.22-15-06830.2002.

[9] M. Geva-Sagiv, E.A. Mankin, D. Eliashiv, S. Epstein, N. Cherry, G. Kalender,
N. Tchemodanov, Y. Nir, I. Fried, Augmenting hippocampal–prefrontal neuronal
synchrony during sleep enhances memory consolidation in humans, Nat. Neurosci.
26 (6) (2023), https://doi.org/10.1038/s41593-023-01324-5.

[10] M. Geva-Sagiv, Y. Nir, Local sleep oscillations: implications for memory
consolidation, Front. Neurosci. 13 (2019) 813, https://doi.org/10.3389/
fnins.2019.00813.

[11] L. Marshall, J. Born, The contribution of sleep to hippocampus-dependent memory
consolidation, Trends Cognit. Sci. 11 (10) (2007) 442–450, https://doi.org/
10.1016/j.tics.2007.09.001.

[12] M. Schabus, G. Gruber, S. Parapatics, C. Sauter, G. Klösch, P. Anderer, W. Klimesch,
B. Saletu, J. Zeitlhofer, Sleep spindles and their significance for declarative
memory consolidation, Sleep 27 (8) (2004) 1479–1485, https://doi.org/10.1093/
sleep/27.7.1479.

[13] F.J. Schmidig, M. Geva-Sagiv, R. Falach, S. Yakim, Y. Gat, O. Sharon, I. Fried,
Y. Nir, A visual paired associate learning (vPAL) paradigm to study memory
consolidation during sleep, J. Sleep Res. 33 (5) (2024) e14151, https://doi.org/
10.1111/jsr.14151.

[14] S. Kurth, M. Ringli, A. Geiger, M. LeBourgeois, O.G. Jenni, R. Huber, Mapping of
cortical activity in the first two decades of life: a high-density sleep
electroencephalogram study, J. Neurosci. 30 (40) (2010) 13211–13219, https://
doi.org/10.1523/JNEUROSCI.2532-10.2010.

[15] R.F. Helfrich, B.A. Mander, W.J. Jagust, R.T. Knight, M.P. Walker, Old brains come
uncoupled in sleep: slow wave-spindle synchrony, brain atrophy, and forgetting,
Neuron 97 (1) (2018) 221–230.e4, https://doi.org/10.1016/j.
neuron.2017.11.020.

[16] F. Siclari, B. Baird, L. Perogamvros, G. Bernardi, J.J. LaRocque, B. Riedner,
M. Boly, B.R. Postle, G. Tononi, The neural correlates of dreaming, Nat. Neurosci.
20 (6) (2017), https://doi.org/10.1038/nn.4545.

[17] B.A. Mander, S.M. Marks, J.W. Vogel, V. Rao, B. Lu, J.M. Saletin, S. Ancoli-Israel,
W.J. Jagust, M.P. Walker, β-amyloid disrupts human NREM slow waves and related
hippocampus-dependent memory consolidation, Nat. Neurosci. 18 (7) (2015),
https://doi.org/10.1038/nn.4035.

[18] F. Ferrarelli, Sleep spindles as neurophysiological biomarkers of schizophrenia,
Eur. J. Neurosci. 59 (8) (2023) 1907–1917, https://doi.org/10.1111/ejn.16178.

[19] S.T. Aung, Y. Wongsawat, Modified-distribution entropy as the features for the
detection of epileptic seizures, Front. Physiol. 11 (607) (2020), https://doi.org/
10.3389/fphys.2020.00607.

[20] F. Edderbali, M. Harmouchi, E. Essoukaki, Transfer learning for epilepsy detection
using spectrogram images, IAES Int. J. Artif. Intell. 13 (1) (2024) 1022, https://doi.
org/10.11591/ijai.v13.i1.pp1022-1029.

[21] D.M. Tucker, A.C. Waters, M.D. Holmes, Transition from cortical slow oscillations
of sleep to spike-wave seizures, Clin. Neurophysiol. 120 (12) (2009) 2055–2062,
https://doi.org/10.1016/j.clinph.2009.07.047.

[22] İ. Kaya, A brief summary of EEG artifact handling, in: Brain-Computer Interface,
IntechOpen, 2021, https://doi.org/10.5772/intechopen.99127.

[23] M.X. Cohen, Analyzing Neural Time Series Data, MIT Press, 2014, https://doi.org/
10.7551/mitpress/9609.001.0001.

[24] A. Delorme, EEG is better left alone, Sci. Rep. 13 (1) (2023), https://doi.org/
10.1038/s41598-023-27528-0.

[25] B.A. Riedner, V.V. Vyazovskiy, R. Huber, M. Massimini, S. Esser, M. Murphy,
G. Tononi, Sleep homeostasis and cortical synchronization: III. A high-density EEG
study of sleep slow waves in humans, Sleep 30 (12) (2007) 1643–1657, https://doi.
org/10.1093/sleep/30.12.1643.

[26] R.K. Das, A. Martin, T. Zurales, D. Dowling, A. Khan, A survey on EEG data analysis
software, Science 5 (2) (2023), https://doi.org/10.3390/sci5020023.

[27] F. Tadel, S. Baillet, J.C. Mosher, D. Pantazis, R.M. Leahy, Brainstorm: a user-
friendly application for MEG/EEG analysis, Comput. Intell. Neurosci. 2011 (2011)
e879716, https://doi.org/10.1155/2011/879716.

[28] A. Delorme, S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial
EEG dynamics including independent component analysis, J. Neurosci. Methods
134 (1) (2004) 9–21, https://doi.org/10.1016/j.jneumeth.2003.10.009.

[29] R. Oostenveld, P. Fries, E. Maris, J.-M. Schoffelen, FieldTrip: open source software
for advanced analysis of MEG, EEG, and invasive electrophysiological data, 2010,
Comput. Intell. Neurosci. (2011) e156869, https://doi.org/10.1155/2011/
156869.

[30] A. Gramfort, MEG and EEG data analysis with MNE-Python, Front. Neurosci. 7
(2013), https://doi.org/10.3389/fnins.2013.00267.

[31] S. Huberty, J. Desjardins, T. Collins, M. Elsabbagh, C. O’Reilly, PyLossless: a non-
destructive EEG processing pipeline, bioRxiv (2024), https://doi.org/10.1101/
2024.01.12.575323.

[32] N.W. Bailey, M. Biabani, A.T. Hill, A. Miljevic, N.C. Rogasch, B. McQueen, O.
W. Murphy, P.B. Fitzgerald, Introducing RELAX: an automated pre-processing
pipeline for cleaning EEG data - Part 1: algorithm and application to oscillations,
Clin. Neurophysiol. 149 (2023) 178–201, https://doi.org/10.1016/j.
clinph.2023.01.017.

[33] N. Bigdely-Shamlo, T. Mullen, C. Kothe, K.-M. Su, K.A. Robbins, The PREP pipeline:
standardized preprocessing for large-scale EEG analysis, Front. Neuroinf. 9 (2015)
16, https://doi.org/10.3389/fninf.2015.00016.

[34] S. Blum, N.S.J. Jacobsen, M.G. Bleichner, S. Debener, A riemannian modification of
artifact subspace reconstruction for EEG artifact handling, Front. Hum. Neurosci.
13 (2019) 141, https://doi.org/10.3389/fnhum.2019.00141.

[35] J.R. da Cruz, V. Chicherov, M.H. Herzog, P. Figueiredo, An automatic pre-
processing pipeline for EEG analysis (APP) based on robust statistics, Clin.
Neurophysiol. 129 (7) (2018) 1427–1437, https://doi.org/10.1016/j.
clinph.2018.04.600.

[36] L.J. Gabard-Durnam, A.S. Mendez Leal, C.L. Wilkinson, A.R. Levin, The harvard
automated processing pipeline for electroencephalography (HAPPE): standardized
processing software for developmental and high-artifact data, Front. Neurosci. 12
(2018), https://doi.org/10.3389/fnins.2018.00097.

[37] M. Jas, D.A. Engemann, Y. Bekhti, F. Raimondo, A. Gramfort, Autoreject:
automated artifact rejection for MEG and EEG data, Neuroimage 159 (2017)
417–429, https://doi.org/10.1016/j.neuroimage.2017.06.030.

[38] A. Mognon, J. Jovicich, L. Bruzzone, M. Buiatti, ADJUST: an automatic EEG
artifact detector based on the joint use of spatial and temporal features,
Psychophysiology 48 (2) (2011) 229–240, https://doi.org/10.1111/j.1469-
8986.2010.01061.x.

[39] H. Nolan, R. Whelan, R.B. Reilly, FASTER: fully automated statistical thresholding
for EEG artifact rejection, J. Neurosci. Methods 192 (1) (2010) 152–162, https://
doi.org/10.1016/j.jneumeth.2010.07.015.

[40] R. Somervail, J. Cataldi, A.M. Stephan, F. Siclari, G.D. Iannetti, Dusk2Dawn: an
EEGLAB plugin for automatic cleaning of whole-night sleep electroencephalogram
using Artifact Subspace Reconstruction, Sleep (2023), https://doi.org/10.1093/
sleep/zsad208.

[41] D.C. ’t Wallant, V. Muto, G. Gaggioni, M. Jaspar, S.L. Chellappa, C. Meyer,
G. Vandewalle, P. Maquet, C. Phillips, Automatic artifacts and arousals detection in
whole-night sleep EEG recordings, J. Neurosci. Methods 258 (2016) 124–133,
https://doi.org/10.1016/j.jneumeth.2015.11.005.

[42] P. Anderer, S. Roberts, A. Schlögl, G. Gruber, G. Klösch, W. Herrmann,
P. Rappelsberger, O. Filz, M.J. Barbanoj, G. Dorffner, B. Saletu, Artifact processing
in computerized analysis of sleep EEG – a review, Neuropsychobiology 40 (3)
(1999) 150–157, https://doi.org/10.1159/000026613.

[43] J.A. Desjardins, S. van Noordt, S. Huberty, S.J. Segalowitz, M. Elsabbagh, EEG
Integrated Platform Lossless (EEG-IP-L) pre-processing pipeline for objective signal
quality assessment incorporating data annotation and blind source separation,
J. Neurosci. Methods 347 (2021) 108961, https://doi.org/10.1016/j.
jneumeth.2020.108961.

[44] R. Vallat, M.P. Walker, An open-source, high-performance tool for automated sleep
staging, Elife 10 (e70092) (2021), https://doi.org/10.7554/eLife.70092.

[45] T. Donoghue, M. Haller, E.J. Peterson, P. Varma, P. Sebastian, R. Gao, T. Noto, A.
H. Lara, J.D. Wallis, R.T. Knight, A. Shestyuk, B. Voytek, Parameterizing neural
power spectra into periodic and aperiodic components, Nat. Neurosci. 23 (2020)
1655–1665, https://doi.org/10.1038/s41593-020-00744-x.

[46] T. Kluyver, B. Ragan-Kelley, F. Pérez, B. Granger, M. Bussonnier, J. Frederic,
K. Kelley, J. Hamrick, J. Grout, S. Corlay, P. Ivanov, D. Avila, S. Abdalla, C. Willing,
Jupyter development team, in: F. Loizides, B. Scmidt (Eds.), Jupyter Notebooks – a
Publishing Format for Reproducible Computational Workflows, IOS Press, 2016,
pp. 87–90, https://doi.org/10.3233/978-1-61499-649-1-87.

[47] T. Andrillon, Y. Nir, C. Cirelli, G. Tononi, I. Fried, Single-neuron activity and eye
movements during human REM sleep and awake vision, Nat. Commun. 6 (7884)
(2015), https://doi.org/10.1038/ncomms8884.

[48] S. Leach, G. Sousouri, R. Huber, ‘High-Density-SleepCleaner’: an open-source,
semi-automatic artifact removal routine tailored to high-density sleep EEG,
J. Neurosci. Methods 391 (2023) 109849, https://doi.org/10.1016/j.
jneumeth.2023.109849.

[49] A. Hyvarinen, Fast and robust fixed-point algorithms for independent component
analysis, IEEE Trans. Neural Network. 10 (3) (1999) 626–634, https://doi.org/
10.1109/72.761722.

[50] T.-W. Lee, M. Girolami, T.J. Sejnowski, Independent component analysis using an
extended Infomax algorithm for mixed subgaussian and supergaussian sources,
Neural Comput. 11 (2) (1999) 417–441, https://doi.org/10.1162/
089976699300016719.

[51] P. Ablin, J.-F. Cardoso, A. Gramfort, Faster independent component analysis by
preconditioning with hessian approximations, IEEE Trans. Signal Process. 66 (15)
(2018) 4040–4049, https://doi.org/10.1109/TSP.2018.2844203.

[52] M. Hansson-Sandsten, Optimal multitaper wigner spectrum estimation of a class of
locally stationary processes using hermite functions, EURASIP J. Appl. Signal
Process. (2011) 1–15, https://doi.org/10.1155/2011/980805.

[53] K. Lacourse, J. Delfrate, J. Beaudry, P. Peppard, S.C. Warby, A sleep spindle
detection algorithm that emulates human expert spindle scoring, J. Neurosci.
Methods 316 (2019) 3–11, https://doi.org/10.1016/j.jneumeth.2018.08.014.

[54] T. Andrillon, Y. Nir, R.J. Staba, F. Ferrarelli, C. Cirelli, G. Tononi, I. Fried, Sleep
spindles in humans: insights from intracranial EEG and unit recordings,
J. Neurosci. 31 (49) (2011) 17821–17834, https://doi.org/10.1523/
JNEUROSCI.2604-11.2011.

[55] S.M. Purcell, D.S. Manoach, C. Demanuele, B.E. Cade, S. Mariani, R. Cox,
G. Panagiotaropoulou, R. Saxena, J.Q. Pan, J.W. Smoller, S. Redline, R. Stickgold,
Characterizing sleep spindles in 11,630 individuals from the national sleep
research resource, Nat. Commun. 8 (1) (2017), https://doi.org/10.1038/
ncomms15930.

[56] M. Massimini, R. Huber, F. Ferrarelli, S. Hill, G. Tononi, The sleep slow oscillation
as a traveling wave, J. Neurosci. 24 (31) (2004) 6862–6870, https://doi.org/
10.1523/JNEUROSCI.1318-04.2004.

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

14

[57] Y. Nir, R.J. Staba, T. Andrillon, V.V. Vyazovskiy, C. Cirelli, I. Fried, G. Tononi,
Regional slow waves and spindles in human sleep, Neuron 70 (1) (2011) 153–169,
https://doi.org/10.1016/j.neuron.2011.02.043.

[58] C. Tallon-Baudry, O. Bertrand, C. Delpuech, J. Pernier, Oscillatory γ-band (30–70
Hz) activity induced by a visual search task in humans, J. Neurosci. 17 (2) (1997)
722–734, https://doi.org/10.1523/JNEUROSCI.17-02-00722.1997.

[59] D. Slepian, Prolate spheroidal wave functions, fourier analysis, and uncertainty-V:
the discrete case, Bell Sys. Tech. J. 57 (5) (1978) 1371–1430, https://doi.org/
10.1002/j.1538-7305.1978.tb02104.x.

[60] R. Agarwal, T. Takeuchi, S. Laroche, J. Gotman, Detection of rapid-eye movements
in sleep studies, IEEE (Inst. Electr. Electron. Eng.) Trans. Biomed. Eng. 52 (8)
(2005) 1390–1396, https://doi.org/10.1109/TBME.2005.851512.

[61] P. Welch, The use of fast Fourier transform for the estimation of power spectra: a
method based on time averaging over short, modified periodograms, IEEE Trans.
Audio Electroacoust. 15 (2) (1967) 70–73, https://doi.org/10.1109/
TAU.1967.1161901.

[62] F. Perrin, J. Pernier, O. Bertrand, J.F. Echallier, Spherical splines for scalp potential
and current density mapping, Electroencephalogr. Clin. Neurophysiol. 72 (2)
(1989) 184–187, https://doi.org/10.1016/0013-4694(89)90180-6.

[63] J. Zeitlhofer, P. Anderer, S. Obergottsberger, P. Schimicek, S. Lurger,
E. Marschnigg, B. Saletu, L. Deecke, Topographic mapping of EEG during sleep,
Brain Topogr. 6 (2) (1993) 123–129, https://doi.org/10.1007/BF01191077.

[64] G. Tinguely, L.A. Finelli, H.-P. Landolt, A.A. Borbély, P. Achermann, Functional
EEG topography in sleep and waking: state-dependent and state-independent
features, Neuroimage 32 (1) (2006) 283–292, https://doi.org/10.1016/j.
neuroimage.2006.03.017.

[65] B. Weiss, Z. Clemens, R. Bódizs, P. Halász, Comparison of fractal and power
spectral EEG features: effects of topography and sleep stages, Brain Res. Bull. 84 (6)
(2011) 359–375, https://doi.org/10.1016/j.brainresbull.2010.12.005.

[66] H.-P. Landolt, A.A. Borbély, Age-dependent changes in sleep EEG topography, Clin.
Neurophysiol. 112 (2) (2001) 369–377, https://doi.org/10.1016/S1388-2457(00)
00542-3.

[67] B.A. Mander, J.R. Winer, M.P. Walker, Sleep and human aging, Neuron 94 (1)
(2017) 19–36, https://doi.org/10.1016/j.neuron.2017.02.004.

[68] R. Cox, A.C. Schapiro, D.S. Manoach, R. Stickgold, Individual differences in
frequency and topography of slow and fast sleep spindles, Front. Hum. Neurosci.
11 (2017), https://doi.org/10.3389/fnhum.2017.00433.

[69] J. Zeitlhofer, G. Gruber, P. Anderer, S. Asenbaum, P. Schimicek, B. Saletu,
Topographic distribution of sleep spindles in young healthy subjects, J. Sleep Res. 6
(3) (1997) 149–155, https://doi.org/10.1046/j.1365-2869.1997.00046.x.

[70] E. Combrisson, R. Vallat, J.-B. Eichenlaub, C. O’Reilly, T. Lajnef, A. Guillot, P.
M. Ruby, K. Jerbi, Sleep: an open-source Python software for visualization,
analysis, and staging of sleep data, Front. Neuroinf. 11 (2017), https://doi.org/
10.3389/fninf.2017.00060.

[71] T. Komiya, G. Brandl, B. Jean-François, T. Shimizukawa, A. Turner, J.L. Andersen,
D. Neuhäuser, S. Finucane, R. Lehmann, T. Kampik, J. Magin, Jacobmason,
J. Dufresne, J. Waltman, J.L.C. Rodríguez, A. Ronacher, D. Shachnev,
Y. Shibukawa, M. Geier, N. Kaneko, sphinx-doc/sphinx: Sphinx 7.2.6 (Version
v7.2.6), Zenodo (2023), https://doi.org/10.5281/ZENODO.7857310 [Computer
software].

[72] R. Falach, G. Belonosov, F. Schmidig, M. Aderka, V. Zhelezniakov, R. Shani-
Hershkovich, E. Bar, Y. Nir, SleepEEGpy: a Python-based software integration
package to organize preprocessing, analysis, and visualization of sleep EEG data,
Zenodo (2025), https://doi.org/10.5281/ZENODO.14914456.

[73] C.R. Pernet, S. Appelhoff, K.J. Gorgolewski, G. Flandin, C. Phillips, A. Delorme,
R. Oostenveld, EEG-BIDS, an extension to the brain imaging data structure for
electroencephalography, Sci. Data 6 (1) (2019), https://doi.org/10.1038/s41597-
019-0104-8.

[74] R. Falach, M. Geva-Sagiv, D. Eliashiv, L. Goldstein, O. Budin, G. Gurevitch,
G. Morris, I. Strauss, A. Globerson, F. Fahoum, I. Fried, Y. Nir, Annotated interictal
discharges in intracranial EEG sleep data and related machine learning detection
scheme, Sci. Data 11 (2024) 1354, https://doi.org/10.1038/s41597-024-04187-y.

[75] E. Jeong, Y. Woo Shin, J.-I. Byun, J.-S. Sunwoo, M. Roascio, P. Mattioli,
L. Giorgetti, F. Famà, G. Arnulfo, D. Arnaldi, H.-J. Kim, K.-Y. Jung, EEG-based
machine learning models for the prediction of phenoconversion time and subtype
in isolated rapid eye movement sleep behavior disorder, Sleep 47 (5) (2024)
zsae031, https://doi.org/10.1093/sleep/zsae031.

[76] B. Emek Soylu, M.S. Guzel, G.E. Bostanci, F. Ekinci, T. Asuroglu, K. Acici, Deep-
learning-based approaches for semantic segmentation of natural scene images: a
review, Electronics 12 (12) (2023), https://doi.org/10.3390/electronics12122730.

[77] A. Gupta, A.G. Ravelo-García, F. Morgado-Dias, Recent advancements in deep
learning-based remote photoplethysmography methods, in: Data Fusion
Techniques and Applications for Smart Healthcare, Elsevier, 2024, pp. 127–155,
https://doi.org/10.1016/B978-0-44-313233-9.00012-6.

[78] B. Kalita, N. Deb, D. Das, AnEEG: leveraging deep learning for effective artifact
removal in EEG data, Sci. Rep. 14 (1) (2024) 24234, https://doi.org/10.1038/
s41598-024-75091-z.

[79] M. Kalkan, M.S. Guzel, F. Ekinci, E. Akcapinar Sezer, T. Asuroglu, Comparative
analysis of deep learning methods on CT images for lung cancer specification,
Cancers 16 (19) (2024), https://doi.org/10.3390/cancers16193321.

[80] S. Ozsari, E. Kumru, F. Ekinci, I. Akata, M.S. Guzel, K. Acici, E. Ozcan, T. Asuroglu,
Deep learning-based classification of macrofungi: comparative analysis of
advanced models for accurate fungi identification, Sensors 24 (22) (2024) 7189,
https://doi.org/10.3390/s24227189.

[81] X. Zhang, X. Zhang, Q. Huang, Y. Lv, F. Chen, A review of automated sleep stage
based on EEG signals, Biocybern. Biomed. Eng. 44 (3) (2024) 651–673, https://doi.
org/10.1016/j.bbe.2024.06.004.

[82] Z. Gao, W. Dang, X. Wang, X. Hong, L. Hou, K. Ma, M. Perc, Complex networks and
deep learning for EEG signal analysis, Cognit. Neurodynam. 15 (3) (2021)
369–388, https://doi.org/10.1007/s11571-020-09626-1.

[83] P. Ji, J. Ye, Y. Mu, W. Lin, Y. Tian, C. Hens, M. Perc, Y. Tang, J. Sun, J. Kurths,
Signal propagation in complex networks, Phys. Rep. 1017 (2023) 1–96, https://
doi.org/10.1016/j.physrep.2023.03.005.

[84] M. Degirmenci, Y.K. Yuce, M. Perc, Y. Isler, Statistically significant features
improve binary and multiple Motor Imagery task predictions from EEGs, Front.
Hum. Neurosci. 17 (2023), https://doi.org/10.3389/fnhum.2023.1223307.

[85] F. Ekinci, K. Acici, T. Asuroglu, Enhancing tissue equivalence in 7Li heavy ion
therapy with MC algorithm optimized polymer-based bioinks, J. Funct. Biomater.
14 (12) (2023), https://doi.org/10.3390/jfb14120559.

[86] F. Ekinci, K. Acici, T. Asuroglu, B. Emek Soylu, MC TRIM algorithm in mandibula
phantom in helium therapy, Healthcare 11 (18) (2023), https://doi.org/10.3390/
healthcare11182523.

[87] F. Ekinci, T. Asuroglu, K. Acici, Monte Carlo simulation of TRIM algorithm in
ceramic biomaterial in proton therapy, Materials 16 (13) (2023), https://doi.org/
10.3390/ma16134833.

[88] Y. Gokcekuyu, F. Ekinci, A. Buyuksungur, M.S. Guzel, K. Acici, T. Asuroglu,
Comparison of X-ray absorption in mandibular tissues and tissue-equivalent
polymeric materials using PHITS Monte Carlo simulations, Appl. Sci. 14 (23)
(2024), https://doi.org/10.3390/app142310879.

R. Falach et al. Computers in Biology and Medicine 192 (2025) 110232

15

