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A B S T R A C T

Sleep research uses electroencephalography (EEG) to infer brain activity in health and disease. Beyond standard 
sleep scoring, there is growing interest in advanced EEG analysis that requires extensive preprocessing to 
improve the signal-to-noise ratio and specialized analysis algorithms. While many EEG software packages exist, 
sleep research has unique needs (e.g., specific artifacts, event detection). Currently, sleep investigators use 
different libraries for specific tasks in a ‘fragmented’ configuration that is inefficient, prone to errors, and re
quires the learning of multiple software environments. This complexity creates a barrier for beginners. Here, we 
present SleepEEGpy, an open-source Python package that simplifies sleep EEG preprocessing and analysis. 
SleepEEGpy builds on MNE-Python, PyPREP, YASA, and SpecParam to offer an all-in-one, beginner-friendly 
package for comprehensive sleep EEG research, including (i) cleaning, (ii) independent component analysis, (iii) 
sleep event detection, (iv) spectral feature analysis, and visualization tools. A dedicated dashboard provides an 
overview to evaluate data and preprocessing, serving as an initial step prior to detailed analysis. We demonstrate 
SleepEEGpy’s functionalities using overnight high-density EEG data from healthy participants, revealing char
acteristic activity signatures typical of each vigilance state: alpha oscillations in wakefulness, spindles and slow 
waves in NREM sleep, and theta activity in REM sleep. We hope that this software will be adopted and further 
developed by the sleep research community, and constitute a useful entry point tool for beginners in sleep EEG 
research.

1. Introduction

Electroencephalography (EEG) is the main tool in basic and clinically 
oriented sleep research [1]. EEG is routinely used in conjunction with 
electrooculography and electromyography to perform sleep scoring and 
distinguish between vigilance states of wakefulness, rapid eye move
ment (REM) sleep, and non-REM sleep [2]. Sleep scoring is performed 
either manually according to established standards [3] or, in recent 
years, via automatic tools [4–6]. Beyond sleep scoring, there is increased 
attention toward advanced EEG analysis that focuses on investigating 
events occurring at specific times, frequencies, and scalp locations or in 

estimated brain sources [7]. Examples of such sleep EEG analyses 
include an association between sleep spindles and sleep-dependent 
memory consolidation [8–13], regional differences in slow-wave activ
ity during development [14], changes in slow-wave-spindle coupling in 
older age [15], and neural correlates of dreaming [16]. In clinical con
texts, advanced analysis that goes beyond sleep architecture reveals an 
association between disrupted frontal slow waves and β-amyloid pa
thology in Alzheimer’s disease [17], altered central sleep spindles in 
schizophrenia [18], and how epileptic seizures emerge from sleep os
cillations [19–21].

EEG data comprise a mixture of signals of interest from neuronal 
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origin and noise arising from both physiological and extrinsic sources 
[22]. Typically, preprocessing (e.g., filtering and artifact rejection) is 
performed to improve the signal-to-noise ratio (SNR) of EEG signals 
[23]. While EEG may be “better left alone” in event-related contexts 
where noise can be reduced by trial averaging [24], it is crucial to 
preprocess and clean the EEG signal when analyzing the continuous, 
spontaneous brain activity observed during sleep. For example, many 
artifacts, such as sweating or eye movements, are dominated by spectral 
frequencies that overlap with slow-wave activity; hence, removing such 
artifacts is often necessary to accurately characterize sleep homeostasis 
as indexed by slow-wave activity [25].

Various established software packages exist for visualization, pre
processing, and analysis of EEG data [26]. Leading general-purpose EEG 
software packages include open-source MATLAB-based Brainstorm 
[27], EEGLAB [28], and FieldTrip [29], as well as Python-based 
MNE-Python [30]. All of these are under continuous development and 
have witnessed rapidly expanding interest in the scientific community 
(Fig. 1a). In addition, PyLossless [31] provides a pipeline and a GUI for 
continuous EEG preprocessing, focusing on automated artifact detec
tion. EEGLAB and Brainstorm, developed earlier, provide a graphical 
user interface, whereas FieldTrip and MNE-Python are 
scripting-oriented. Over the last decade, automatic preprocessing pipe
lines have been developed and are being increasingly used for rejecting 
artifacts, problematic time intervals, and “bad” electrodes alongside 
conventional visual annotation [32–41] (Fig. 1b).

Sleep EEG research has many specific preprocessing, analysis, and 
visualization considerations compared with classic event-related po
tential (ERP) and resting-state EEG studies. For instance, different 
intrinsic artifacts may be dominant (e.g., cardiac activity, muscle 
twitches, and slow or rapid eye movements), whereas other common 
artifacts during wakefulness, such as eye blinks, are mostly absent [42]. 
Moreover, sleep EEG activity is predominantly spontaneous and not 
necessarily time-locked to external events, as in ERP studies. Therefore, 
continuous data are usually not windowed into epochs. This approach 
warrants preprocessing and visualization methods closer to the raw 
data, in line with a recently proposed ‘lossless’ preprocessing concept 
[43]. Additional considerations unique to sleep EEG analysis include 
sleep-stage-based analyses, such as detecting specific events such as slow 
waves and spindles, as well as examining spectral aspects and associated 
scalp topography. Thus, specific features of sleep EEG present a need for 
specific software tools tailored to these specific needs. Moreover, the 
quantity and complexity of these steps can often be overwhelming for 
beginners in the field.

Ideally, a complete sleep EEG software package should draw on the 
advantages of both general-purpose tools (e.g., preprocessing, time- 
frequency, and topography analyses) and specialized tools for sleep 

research (e.g., integration with sleep scoring, advanced analyses per 
sleep stage, and detection of specific sleep oscillations). At present, this 
is often accomplished by combining multiple existing and custom-made 
tools, leading to a “fragmented” configuration that can be inefficient, 
prone to errors, and demanding in terms of learning curve. These issues 
are an elevated entry barrier for new users and often lead to frustrating 
initial encounters with sleep EEG data.

In the landscape of Python-based tools for sleep research, Wonambi, 
Snooz Toolbox, Luna, PyLossless, and SleepEEGpy stand out as solutions 
targeting different aspects of EEG data analysis. Wonambi and Snooz 
Toolbox offer feature-rich graphical user interfaces (GUIs) that support 
manual sleep scoring, automated artifact rejection, and event detection, 
making them valuable for users who prefer interactive, visual work
flows. In this sense, they are comparable to EEGLAB in the MATLAB 
ecosystem, providing a user-friendly environment with broad func
tionality accessible through a GUI. Luna, on the other hand, is a 
command-line-based toolkit designed for high-throughput batch pro
cessing of large sleep datasets, with a strong focus on flexibility and 
scalability for sleep signal analysis. In contrast, SleepEEGpy is designed 
with a focus on simplicity, flexibility, scalability, and reproducibility, 
following a pipeline-oriented approach that emphasizes automated 
preprocessing, report generation, and advanced analysis. Much like 
FieldTrip, SleepEEGpy offers a modular, script-based API, enabling re
searchers to work efficiently within Jupyter Notebooks while main
taining full control over each step of the analysis. This design not only 
paves a standardized workflow for users but also promotes reproducible 
research practices, which are critical in large-scale and collaborative 
projects.

Here, we present SleepEEGpy, a package that integrates pre
processing, analysis, and visualization for general sleep EEG data. It is 
designed to streamline workflows through a simple, script-based API, 
providing flexibility for both beginners and experienced researchers. We 
initially developed SleepEEGpy as a tool for new students in our lab to 
work with EEG data of human sleep. It is meant to offer a user-friendly 
introduction to sleep data analysis for users with little to no prior 
experience with EEG, sleep, or programming. Geared for beginners, it is 
not meant to replace the rich and complex functionalities of highly 
developed packages that it is based on (e.g., MNE); rather, it facilitates 
an entry point for newcomers in sleep EEG research. At the same time, its 
standardized visualization allows more experienced users to quickly 
assess the quality of the applied sleep-scoring, pre-processing, and 
analysis of the sleep data and thus enables them to provide helpful 
feedback and effectively mentor and supervise new users. SleepEEGpy is 
based on the following Python packages: MNE [30], PyPREP [33], YASA 
[44], and SpecParam [45] (formerly FOOOF). The choice of Python as 
an open-source programming language leverages the benefits of its 

Fig. 1. Citation dynamics of common general-purpose and automatic preprocessing EEG software. A noncumulative number of citations (y-axis) per year (x- 
axis) for (a) four leading general-purpose EEG packages (EEGLAB, orange; Fieldtrip, green; Brainstorm, red; MNE-Python, blue) and (b) leading software packages 
implementing automatic preprocessing of EEG data (PREP pipeline, blue; APP, orange; Autoreject, green; ADJUST, red; FASTER, purple; HAPPE, brown; rASRMatlab, 
pink). Citations are based on the Scopus database (December 17, 2023).
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many libraries, including extended machine learning ecosystems, broad 
documentation, and a dynamic community. To support rapid learning, 
SleepEEGpy includes example Jupyter notebooks demonstrating its 
pipeline functions [46]. To contextualize SleepEEGpy within the 
broader landscape of available tools, Table 1 presents a comparison of 
several publicly available sleep EEG toolkits across a range of key fea
tures. Notably, SleepEEGpy is not meant to replace or improve the 
packages it is built on. Its value primarily lies in simplifying getting 
started with these packages by unifying them into one framework and by 
reducing the functionality to the core necessities for the analysis of 
general sleep EEG data. In this study, we aim to demonstrate how 
SleepEEGpy simplifies complex sleep EEG analyses, supports standard
ized workflows, and enhances reproducibility in sleep research.

2. Methods

2.1. Overview

The SleepEEGpy pipeline (see Fig. 2 for a flowchart) is divided into 
two sections: preprocessing and analysis. Section A (preprocessing) is 
further divided into A1 (cleaning) and A2 (independent component 
analysis, ICA), whereas section B (analysis) is further divided into B1 
(events) and B2 (spectral). The preprocessing section aims to increase 
the SNR by cleaning (e.g., filtering, rejecting bad electrodes or prob
lematic temporal intervals, with rejections done either manually or 
automatically using MNE and PyPREP) and by regressing out noise 
components (through an ICA). The analysis section focuses either on 
specific sleep events (graphoelements such as sleep spindles, slow- 
waves, or rapid eye movements) or power spectral decomposition per
formed for individual recordings or multiple datasets. The dashboard 
and additional visualization tools allow a precise and sleep-tailored vi
sual assessment of the preprocessing and the analysis section. Together, 
SleepEEGpy offers an integrated pipeline for cleaning, ICA, event 
detection and analysis, spectral analysis, and visualization, as well as 
integration with sleep scoring vectors (performed either a priori 
manually or automatically via YASA).

2.2. Prerequisites: input data, software, and hardware

To utilize SleepEEGpy, input data must consist of non-segmented 
(‘continuous’) EEG data in common formats supported by MNE- 
Python, such as Brain Vision, Meta File Format (MFF), or European 

Data Format (EDF). For sleep-stage-based functionality (both events and 
spectral), an additional sleep scoring vector is required in the form of a 
text file containing an integer per row representing different sleep stages 
for each epoch. For example, the sleep module of the Visbrain package 
provides an interface for sleep scoring that is well-suited and compatible 
with SleepEEGpy. If this data is not provided, SleepEEGpy can perform 
automatic sleep scoring using the YASA package. SleepEEGpy requires 
Python version 3.9 or higher, with Python versions between 3.9 and 
3.11 recommended. It is advised to install SleepEEGpy in a Python 
virtual environment (using venv or conda) to avoid conflicts with other 
packages. Installation of SleepEEGpy is straightforward, and in
structions are provided on the GitHub repository. Briefly, users should 
set up a virtual environment, install the required Python dependencies, 
and download the necessary notebooks to familiarize themselves with 
the library’s functionalities. The repository also provides a quickstart 
guide, including a notebook with an end-to-end example of dataset 
retrieval, preprocessing, and analysis. Particularly for long overnight 
(6–10h) high-density (128/256-channel) EEG sleep datasets, we highly 
recommend at least 64 GB of rapid access memory (RAM), especially for 
event detection tools, even when the sampling rate is not higher than 
256 Hz.

2.3. Architecture and typical workflow

Each tool within the pipeline is organized independently and has a 
corresponding Jupyter notebook. These notebooks serve as exemplars, 
providing a detailed walkthrough of each tool’s functionality and of
fering step-by-step guidance to new users. More experienced users can 
always re-organize, reuse, and combine different pipeline tools to sup
port their needs. Fig. 2 depicts a possible prototypic process flow of the 
SleepEEGpy pipeline.

Section A: Preprocessing. The preprocessing section (Fig. 2A) is 
divided into two tools: A1, cleaning, and A2, ICA. The dashboard offers a 
convenient way of reviewing the quality of the applied preprocessing 
steps. Furthermore, we provide a Jupyter notebook for the cleaning (A1) 
that can be applied with minimal knowledge of sleep and without 
further manual inputs. It uses default parameters for resampling, 
filtering, automatic rejection of bad channels and epochs, and automatic 
sleep-scoring. Naturally, default parameters will not result in ideal 
preprocessing, which has to be evaluated carefully. However, it provides 
a first-pass “low-entry” point for beginners to start exploring the pre
processing of sleep EEG and refine further via additional iterations.

Table 1 
Comparison of SleepEEGpy with other sleep EEG analysis toolkits. The table presents a side-by-side overview of different features across SleepEEGpy and several 
existing software tools for sleep EEG analysis.

Feature/Tool SleepEEGpy Wonambi Snooz 
Toolbox

Luna PyLossless MNE EEGLAB FieldTrip

Platform Python Python Python Command line + R 
& Python 
extensions

Python Python MATLAB MATLAB

Interface Scripting GUI + scripting GUI GUI + scripting Scripting Scripting GUI + scripting Scripting
Sleep Scoring Automated via YASA Manual No Automated No No No No
Artifact 

Handling
Automated via 
PyPREP or manual 
via MNE

Manual Automated Automated Advanced 
auto-cleaning

Manual Automated +
manual

Automated +
manual

Event Detection Spindles, slow 
waves, REMs via 
YASA

Spindles, slow 
waves

Spindles, 
slow waves

Spindles, slow 
waves

No No No No

Sleep Report Standardized 
dashboard + pipeline 
plots

Interactive GUI 
+ CSV sleep stats

TSV sleep 
stats

Console 
summaries +
pipeline plots

No Basic plotting 
functions

Basic plotting 
functions

Basic plotting 
functions

Scalability High Moderate Moderate Very high Moderate High Moderate High
Prior 

Knowledge
Low Moderate Moderate High Low Moderate Low Moderate

Documentation Online docs +
Jupyter tutorials

Online docs Online docs Extensive online 
docs + tutorials

Online docs Extensive 
online docs +
tutorials

Online docs +
community

Online docs +
community
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A1. Cleaning. The pipeline cleaning tool consists of the following 
signal processing techniques: EEG resampling, filtering, re-referencing, 
noisy channels and temporal intervals annotation, and interpolation of 
the annotated channels. Resampling is often a necessary step in sleep 
EEG preprocessing because overnight recordings may require tens of 
gigabytes of RAM. Filters and data annotations provide a way to improve 
the SNR by removing artifacts from the signal. For example, by applying 
a notch filter to remove electrical line noise (50/60Hz) or by annotating 
the intervals of movements to avoid their subsequent analysis. Slee
pEEGpy employs the same filtering methods as MNE, ensuring consis
tency with widely used EEG preprocessing standards. Default 
parameters, along with their rationale, are presented below. Re- 
referencing EEG data to the common average is typically used for 
assessing topography distributions after interpolating noisy channels, 
ensuring that the mean is not dominated by outliers. Since there is no 
widely accepted standard for automatically detecting bad channels and 
noisy epochs in sleep EEG research, the default approach is manual in
spection and tagging. However, users can opt for automatic cleaning 
algorithms tested on our example sleep datasets or combine both 
methods. Automatic bad channel detection is based on PyPREP, which 
uses RANSAC, while noisy epoch identification follows MNE’s approach, 
relying on peak-to-peak amplitude thresholds.

A2. ICA. The ICA tool is MNE-based and consists of EEG signal 
decomposition, selection of artificial components based on a data 
browser and components’ topographies, and subsequent EEG signal 
reconstruction after regressing out the artificial components. EEG, and 
sleep EEG specifically, contains noise sources unrelated to brain activity. 
We can identify and to some extent separate, the noise from the neuronal 
signal. For example, physiological noise (e.g., electrocardiograph, 
sweating, rolling eye movements) or external noise (e.g., 50/60Hz line 
noise) can often be reliably identified based on the components’ to
pographies and time series. Applying ICA is optional because there are 
advantages and disadvantages in removing or keeping some compo
nents, depending on the subsequent analysis and the focus of the 

investigation. For example, eye movement-related potentials during 
sleep may mask neuronal activities and be chosen to be removed in some 
contexts; however, in other studies, the research question may require 
their detection [47]. Most sleep EEG studies do not employ ICA and 
prefer to discard entire 20s/30s segments based on manual identifica
tion given the rich, long datasets. However, a disadvantage of this 
approach is that it may limit artifact identification to the few channels 
used for sleep scoring [48].

Default parameters. By default, the parameters for preprocessing 
and visualization are set as follows: 

● Band-pass filter: the default is high-pass (but not low-pass) filtering 
of the data with a cutoff of 0.3 Hz. As defined by MNE, the default 
filter is a zero-phase (non-causal) finite impulse response (FIR) filter 
using the window method with the hamming window. Stricter high- 
pass filtering, e.g., 0.75 Hz, may be preferable in the presence of 
high-amplitude sweat artifacts [48].

● Notch filter: By default, we set 50 Hz and its harmonics to be filtered 
using a notch filter. Like the band-pass filter, the notch filter is a zero- 
phase FIR filter with a hamming window and 1 Hz width of the 
transition band.

● ICA: The default ICA algorithm, based on MNE’s implementation, is 
set to FastICA [49], which performs a contrast-based optimization to 
maximize non-Gaussianity and extract statistically independent 
components. Alternatively, users can switch to Infomax [50] which 
applies a neural-network-inspired gradient-based learning rule, or 
Picard [51], which leverages a quasi-Newton optimization approach 
with improved convergence properties. The number of 
largest-variance PCA components passed to the ICA algorithm is set 
to 30 by default. Following MNE’s recommendation, the signal is by 
default high-pass filtered at 1.0 Hz before fitting to reduce the ICA 
algorithm sensitivity to low-frequency drifts.

The rationale behind these default parameters is to provide a 

Fig. 2. Flowchart of the SleepEEGpy pipeline. Section A (preprocessing) is divided into A1 (cleaning) and A2 (ICA). The cleaning tool (A1) handles operations 
such as resampling, filtering, and the annotation of noisy electrodes or epochs, with the option to interpolate affected channels. The ICA tool (A2) provides 
component visualization and rejection. A dedicated dashboard (Fig. 3) offers a visual summary of preprocessing. Section B (analysis) comprises B1 (detection of sleep 
events like spindles or slow waves) and B2 (spectral analysis for single or multiple datasets). Arrows indicate transitions between the pipeline tools. Overlapping 
circles and multiple arrows illustrate the merging of multiple single-subject analyses into a single group-level analysis, while text blocks represent key outputs, with 
visualizations highlighted. Abbreviations: PSD, power spectral density; TFR, time-frequency representation.
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balanced, “ready-to-use” setup for general sleep EEG analyses. Our 
choices mirror widely adopted practices in the EEG research community 
(e.g., MNE defaults). Advanced users with specific research questions or 
data characteristics, such as very slow oscillations in pathological pop
ulations, are encouraged to modify these defaults accordingly.

Dashboard: summary and visualization of preprocessing. To 
provide a visual summary and overview of sleep EEG data preprocess
ing, we created a dashboard (Fig. 3). It accepts as an input the output of 
either A1 or A2 (Fig. 2A). Hence, the dashboard can visualize cleaned 
EEG recordings with or without excluded ICA components. Further
more, one can optionally refine the visualization by adding a sleep- 
scoring vector. Based on the input, all visualizations in the dashboard 
are then computed with or without ICA or sleep scoring. As a pre- 
configured visualization tool, it displays the characteristic sleep prop
erties of the EEG recording, such that the data quality and SNR of that 
sleep dataset can be estimated relatively quickly from a “bird’s eye” 
view. The dashboard includes four sections: general preprocessing in
formation (Fig. 3a), topographical power distribution of key oscillations 
in specific vigilance states (Fig. 3b), time-frequency decompositions 
(spectrogram, computed using the Multitaper method [52]) super
imposed with the corresponding hypnogram, once before (Fig. 3c) and 
once after (Fig. 3d) the rejection of bad time intervals (and after ICA, if 
used), and power spectral density (PSD) plots before and after the pre
processing (Fig. 3e and f). A full description of the dashboard results for 
representative data of overnight sleep in a healthy subject is detailed 
below in the Results section.

Section B: Analysis. The analysis section (Fig. 2B) is divided into 
two tools: B1, event-based analysis, and B2, spectrum-based analysis. B1 
is mainly based on YASA and B2 is based on MNE and SpecParam. Here 
we describe the main functionalities; for fine-tuning of additional pa
rameters, it is best to refer to the documentation of the original package. 
The major advantage here is that SleepEEGpy offers the event- and 
spectrum-based analysis of sleep EEG within the same framework as the 
preprocessing and thus is easier to get started for new users. Neverthe
less, if one is already acquainted with YASA, employing the package 
directly might be more convenient than submitting the parameters to 
YASA through SleepEEGpy.

B1. Event detection and analysis tools. Event-based tools in the 
SleepEEGpy pipeline are used to detect and characterize three different 
sleep graphoelements, namely sleep spindles, slow waves, and rapid eye 
movements. Each tool takes an MNE-readable EEG file and the sleep 
scoring vector as input. The input EEG file is typically the output of the 
preprocessing section, but this is not mandatory. The detection methods 
of the event-based tools are completely based on YASA detection algo
rithms [44] and allow the same input parameters. The output of the 
detection algorithm provides features of the detected events (for 
example, number of events, amplitude/frequency characteristics of 
sleep spindles), as well as the average time-frequency representation 
averaged per channel across the detected events. The associated visu
alizations (as seen in Fig. 4) include average event time-course plots, 
topographical distributions of the events’ features, and time-frequency 
representations.

Sleep spindles are detected using YASA’s algorithm. The algorithm 
is based on Lacourse et al. [53] and is similar to our previous work [54]. 
In brief, detection is performed by the algorithm using a combination of 
different thresholds (relative sigma power, root mean square, and cor
relation) separately for the broadband (by default 1–30 Hz) and 
sigma-filtered (by default 12–15 Hz) EEG signals. Detection signals are 
resampled to the original time vector of the EEG data using cubic 
interpolation to facilitate better precision for spindle start time, end 
time, and duration. The relative sigma power (relative to the total power 
in the broadband frequency) is computed using a short-term Fourier 
transform. Each spindle’s median frequency and absolute power are 
computed using the Hilbert transform. Additional spindle properties are 
computed (e.g., symmetry index) as suggested in Ref. [55]. Detected 
events with a duration within the range of a prototypical spindle are 

kept for subsequent analysis (default duration is 0.5–2 s). Finally, an 
isolation forest algorithm is optionally applied to reject outliers. The 
EEG signals of the detected spindles can be extracted with a corre
sponding function, and the properties of the spindles can be accessed 
through a summary Pandas dataframe.

Slow waves are detected via YASA’s algorithm, which is based on a 
study by Massimini and colleagues [56] and similar to our own previous 
work [57]. In brief, the EEG signal is band-pass filtered in the default 
range of 0.3–1.5 Hz using an FIR filter with a transition band of 0.2 Hz. 
Next, negative peaks in the filtered signal with an amplitude of [− 40 to 
− 200] uV are detected, as well as all positive peaks with a default 
amplitude of [10 to 150] uV. For each negative peak (slow wave trough), 
the nearest positive peak is found, and several metrics are computed, 
such as the peak-to-peak amplitude, durations of the negative and pos
itive phases, and frequency. A set of logical thresholds, e.g., phase 
duration, is applied to determine the true slow waves. A Pandas data
frame is created, where each row is a detected slow wave, and each 
column represents a property of this slow wave. An optional automatic 
outlier rejection is applied to further remove abnormal slow waves. 
Similar to the spindle detection algorithm, the EEG signals of the 
detected slow waves can be extracted.

The detected spindle and slow wave events can be further analyzed 
using the average time-frequency representation (TFR). Either Morlet 
wavelets [58] or discrete prolate spheroidal sequence (DPSS) tapers [59] 
can be used for the TFR computation as implemented by MNE. For the 
TRF computation of the detected events, we first extracted the EEG 
signal with a user-defined duration (by default, − 1 to 1 s around the 
central peak for spindles and negative peak for slow waves). Second, the 
extracted events are used to compute the average TFR, where the TFR is 
averaged over events in each channel and each sleep stage. Finally, the 
average TFR is placed inside an MNE-based container (‘AverageTFR’). It 
provides additional extensive data manipulation functionality and 
various visualizations (e.g., Fig. 4b).

Rapid eye movements (REMs) are also detected using YASA’s al
gorithm. The algorithm uses the rapid eye movement detection method 
based on left and right outer canthi (left: LOC, right: ROC) EOG data 
proposed in Ref. [60]. In brief, the algorithm uses amplitude thresh
olding of the negative product of the LOC and ROC signals. The REM 
peaks are detected based on the user-defined frequency range (defaults 
to 0.5–5 Hz), amplitude threshold (defaults to min 50 and max 325 μV), 
and REM duration (defaults to min 0.3 and max 1.2 s). Similar to spindle 
and slow wave detection algorithms, the outliers of the detected REMs 
can be removed using the isolation forest algorithm, and the summary 
Pandas dataframe and their EEG signal can be extracted.

B2. Spectral tools. Spectral-based tools in the SleepEEGpy pipeline 
include single recording or multiple dataset analyses. The single 
recording spectral tool takes an MNE-readable EEG file as input, and the 
sleep scoring vector (if not provided, can be automatically predicted by 
the tool with YASA’s algorithm). The spectral tool for multiple dataset 
analysis then takes multiple instances of the single recording tool as 
input. The numeric output of both tools is PSDs calculated separately for 
each sleep stage. The PSDs per sleep stage are computed using Welch’s 
method [61] in the following way: first, the EEG signal is divided into 
regions according to changes in sleep depth, i.e., at the end of the di
vision, there can be multiple segments for each sleep stage. Then, using 
Welch’s method, PSDs are separately computed for each segment. 
Finally, separately for each sleep stage, a weighted arithmetic mean 
based on the length of a segment is applied to the PSDs, producing a 
per-sleep-stage PSD. The PSD computation is based on the MNE’s Welch 
function (psd_array_welch), accepts all the original parameters, and uses 
the same defaults (e.g., the length of FFT and Welch’s segments are set to 
256, the segments’ overlap is 0, the default window is the hamming 
type). In addition, the multiple dataset spectral tool averages PSDs over 
recordings. Finally, the computed PSDs per sleep stage are placed inside 
MNE-based containers (‘SpectrumArray’) to preserve the rich 
spectrum-related functionality of MNE.
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PSD results can be visualized either in a “traditional” (power vs. 
frequency) plot (as in Fig. 3e/f or Fig. 6a) or with corresponding scalp 
topography distributions (as in Fig. 3b or Fig. 5). Additional manipu
lations and visualizations of the PSDs per sleep stage are available 
through the MNE containers. In-depth spectral analysis can be con
ducted with SpecParam (formerly FOOOF) [45] (Fig. 6b). This analysis 
improves the characterization of signals of interest by overcoming the 
limitations of conventional narrowband analyses, e.g., misinterpretation 
of physiological phenomena. This is accomplished by parameterizing 
neural PSDs into periodic and aperiodic components. This algorithm can 
identify periodic oscillatory parameters, including the center frequency, 
power, and bandwidth. In addition, offset and exponent parameters can 
be extracted for the aperiodic component.

Each spectral tool can be computed and viewed at the single 
recording level (as in Fig. 3e/f) or across multiple datasets (Figs. 5 and 6) 
recordings, where PSDs are averaged separately across multiple datasets 
for each EEG electrode and frequency band. Finally, to allow additional 
preprocessing flexibility and benefit from the interface with diverse 
approaches, spectral tools can also accept an epoch-based signal anno
tated with sleep stages as an input (as in ERP studies) rather than a 
‘continuous’ EEG signal typical for sleep studies.

2.4. EEG data

We illustrate SleepEEGpy functionalities by applying it to sleep re
cordings of 44 healthy, young adult participants (25 females, age 25.86 
± 3.14 years (mean ± STD), ranging from 21 to 36 years) who 

participated in a research study on sleep and memory consolidation. In 
addition, we included one healthy older adult (male, age 68) who 
participated in a sleep and neurodegeneration study (as part of the 
control cohort). Written informed consent was obtained from each 
participant. These studies were approved by the Medical Institutional 
Review Board of the Tel Aviv Sourasky Medical Center. Participants did 
not have any history of neuropsychiatric or sleep disorders. Each 
participant arrived at the sleep lab around 21:00 and, after cognitive 
testing, proceeded to undisturbed sleep (the data presented here). The 
mean duration of the recording was 7:18:28 ± 0:36:20 (hours:minutes: 
sec, mean ± STD). We collected polysomnographic data, including high- 
density electroencephalogram (hd-EEG), EOG, EMG, and video, as 
described in [13]. hd-EEG was recorded using a 256-channel (plus one 
reference channel) hydrogel geodesic sensor net (Electrical Geodesics, 
Inc. [EGI]). Signals were referenced to Cz, amplified using an anti
aliasing filter and an AC-coupled high input impedance amplifier 
(NetAmps 300, EGI), and digitized at 1000 Hz. Before recording began, 
after conductive gel application, all sensors’ electrode impedance was 
confirmed to be at least below 50 kΩ.

2.5. Comparison with EEGLAB

To further ensure the consistency and validity of SleepEEGpy’s out
puts, we conducted a data-driven comparison with a widely used EEG 
analysis tool, EEGLAB (Fig. 7). Specifically, we compared the topo
graphical distribution of key EEG frequency bands during distinct sleep 
stages, using our publicly available nap dataset. We focused on four key 

Fig. 3. Preprocessing assessment with the dashboard. Top, blue box: healthy young adult. Bottom, orange box: healthy older adult. a) Left: EEG net montage with 
spatial distribution of the interpolated channels (in red); right: general information of the recording’s preprocessing. b) Topographical PSD distribution per sleep 
stage in its characteristic frequency band (8–12 Hz for Wake, 12–15 Hz for N2, 1–4 Hz for N3, and 4–8 Hz for REM); subfigures c–f are based on the E101 electrode 
(Pz); subfigures c) and d) present single-channel spectrograms of the recording (colored power distribution in logarithmic scale over time and frequency) overlapped 
with a hypnogram (black line representing depth of sleep as a function of time). c) Spectrogram of the signal after filtering and bad channel interpolation. d) 
Spectrogram after filtering, bad channel interpolation, bad data span rejection, and optionally, exclusion of artificial independent components (ICA). Subfigures e) 
and f) present single-channel power spectral distribution (PSD) plots as a function of frequency, with lines representing different sleep stages: blue for Wake, orange 
for N1, green for N2, red for N3, and purple for REM. The gray area on the left of the plots shows frequencies filtered by the high-pass filter. Note that the cleaning 
steps yield clearer spectral characteristics, such as a more prominent alpha peak during wakefulness. e) PSD plot of the signal after filtering and bad channel 
interpolation. f) PSD plot of the signal with additional bad data span rejection and, optionally, exclusion of artificial independent components. Panels g–l (within the 
orange box) are equivalent to panels a–f but for the healthy older adult. Note that the older adult experiences multiple brief awakenings, visible as more frequent 
transitions to Wake.

Fig. 4. Visualizations of the detected spindles. Overall, 48057 spindles were detected in 257 channels of 193min N2 sleep in a healthy young adult. (a) Average 
signal over all detected spindles in all channels centered around the spindle peak. (b) Average time-frequency representation of detected spindles from channel E101 
(Pz). (c) Average topographical distribution of spindle characteristics: amplitude (left), frequency (middle), and duration (right). Note the typical separation into 
slower frontal spindles versus faster centroparietal spindles.
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combinations also exist in the dashboard: alpha activity (8–12 Hz) 
during wakefulness, sigma activity (12–15 Hz) during N2, delta activity 
(0.5–4 Hz) during N3, and theta activity (4–8 Hz) during REM sleep. 
Both pipelines were run with similar preprocessing parameters, 
including bandpass filtering, bad channels interpolation, and common 
average referencing, to ensure consistency across software environ
ments. The scalp topographies were then computed per frequency band 
and sleep stage using identical time windows.

3. Results

To illustrate the functionality, typical workflow, specific tools, and 
visualizations of the SleepEEGpy pipeline, we performed preprocessing 
and analysis of overnight sleep EEG data obtained in 44 young, healthy 
adults participating in a memory consolidation study (Methods). The 
analysis was conducted using a structured sequence of Jupyter note
books, beginning with preprocessing and artifact rejection, followed by 
event-based detection, and concluding with spectral analysis. Each step 
is demonstrated using representative datasets before extending the 
analysis to the full dataset, highlighting both individual case studies and 

Fig. 5. The topographical distribution of PSD per frequency band and sleep stage averaged over 40 subjects. Each row represents a sleep stage, from top to 
bottom: Wake, N1, N2, N3, and REM. Each column represents a frequency band, from left to right: Delta (1–4 Hz), Theta (4–8 Hz), Alpha (8–12.5 Hz), Sigma (12–15 
Hz), Beta (12.5–30 Hz). Percentages in brackets represent a fraction of the sleep stage signal from the overall data.
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overall trends. The following sections will present results that showcase 
the capabilities of SleepEEGpy, including automated cleaning, visuali
zation, and spectral and event-based analyses. This approach demon
strates how SleepEEGpy can be applied not only to overnight recordings 
but also to other sleep studies, such as daytime naps or studies in clinical 
populations. Similar applications can be used for any type of sleep 
recording, such as a daytime nap or a study in clinical populations. In 
this study, each dataset consisted of a ~7h undisturbed sleep hd-EEG 
(256-channel, EGI) combined with polysomnography including EOG, 
EMG, and video.

3.1. Section a preprocessing: cleaning and optional ICA

The first step in the pipeline is to perform cleaning (Fig. 2a) via 
downsampling, filtering, visual annotation, and interpolation of noisy 
electrodes, as well as identification and exclusion of noisy temporal 
intervals from subsequent analysis. We illustrate this on one represen
tative dataset (27-year-old female). For the preprocessing, we down- 
sampled the data to 250 Hz; and used a common average reference. 
Additionally, we choose to perform ICA (see below). In terms of filtering, 
we used a band-pass filter of 0.75–40 Hz, without applying a specific 
notch filter.

Next, as part of the SleepEEGpy pipeline, we used an MNE-based data 
browser to annotate bad channels and bad temporal intervals. Manual 
inspection and annotation of raw signals were performed in the “but
terfly” view and complemented by PSD topography inspection to 
finalize the exclusion of abnormal channels. In our example of a young 
adult participant, 8.95 % of the channels were annotated as bad and 
interpolated using MNE-based spherical spline interpolation [62]. 
Across the entire dataset (N = 44), 14.0 ± 4.6 % (mean ± STD) were 
marked as “bad channels”, and four subjects with more than 25 % bad 
channels were excluded, leaving N = 40 for subsequent analysis. Next, 
we marked temporal intervals in the representative dataset as “bad” 
(4.84 % of the data in the example, 5.3 ± 2.4 % across the entire N = 40 
dataset). Next, sleep scoring was performed manually according to 
established American Academy of Sleep Medicine (AASM) criteria (3) to 
create a specific vector text file that could be fed to SleepEEGpy as input 
for subsequent preprocessing and analysis (Methods). The other 39 
datasets were sleep-scored automatically using YASA’s algorithm [44]. 
Lastly, we applied ICA to identify and remove components of the EEG 
unrelated to brain activity. We chose to annotate and remove compo
nents associated with the electrocardiograph/heartbeat before pro
ceeding to the analysis. For the older adult example, we applied fully 
automated cleaning using MNE and PyPREP, along with manual sleep 
scoring.

Fig. 3 presents the dashboard, a visual summary after preprocessing. 

The dashboard serves as an initial assessment tool for preprocessing 
quality, allowing users to identify noise, detect patterns in sleep stages, 
and evaluate spectral characteristics before detailed analysis. Here we 
used a representative dataset of one young adult and one older adult and 
plotted the activity at the Pz electrode. We created the dashboard to be a 
helpful, standardized visualization to evaluate the quality of the applied 
preprocessing. It includes the following subplots: general preprocessing 
information (Fig. 3a), topography of selected frequency ranges (3b), TFR 
with hypnogram before (3c) and after (3d) rejection of bad intervals and 
interpolation of bad electrodes, PSD plots of vigilance state before (3e) 
and after (3f) cleaning. To assess preprocessing effectiveness, users can 
look for typical topographies, as seen in Fig. 3b, or compare Fig. 3e and f 
to confirm noise removal while preserving expected spectral features, 
such as the clear alpha peak in wakefulness, and the dominant low- 
frequency power in N3 sleep.

Since the cleaning (no ICA was applied) was successful, the topo
graphic PSD maps of the dominant EEG rhythms for each vigilance state 
(Fig. 3b) show A) Wakefulness (top left) is characterized by maximal 
alpha (8–12 Hz) activity over the occipital lobe. B) In N2 sleep (top 
right), sigma (12–15 Hz) activity predominates over the centroparietal 
electrodes. C) In N3 sleep (bottom left), slow wave activity (<4 Hz) is 
maximal over the frontal cortex, and D) REM sleep (bottom right) is 
characterized by theta (4–8 Hz) activity with its signature scalp 
topography.

Furthermore, the hypnogram (Fig. 3c and d) demonstrates a 
“typical” time course of sleep/wake states. As expected, most bad and 
rejected temporal intervals are associated with wake intervals where 
locomotion and artifacts occur more readily (Fig. 3d, marked as vertical 
white bars). The PSD after the preprocessing (Fig. 3f), compared to 
before (Fig. 3e) shows expected signatures of vigilance states. Specif
ically, the slow-wave activity (SWA, power < 4Hz) is maximal in N3 
sleep, lower in N2 sleep, lower in REM sleep, and lowest in wakefulness; 
showing that sigma (spindle) activity (12–15 Hz) is dominant in N2 and 
N3 sleep; highlighting alpha (8–12 Hz) peak in wakefulness, and diffuse 
theta (4–8 Hz) activity in REM sleep. Note that some of these features do 
not appear clearly before preprocessing (Fig. 3e, left). Fig. 3 also present 
a dashboard from an older adult participant (bottom, orange box, panels 
g–l), illustrating age-related differences in sleep architecture and EEG 
characteristics. Compared to the representative young adult dataset, the 
older adult’s data shows more frequent transitions between sleep stages 
and increased wake after sleep onset (WASO, Fig. 3i and j). Additionally, 
there is a noticeable reduction in frontal delta power during N3 sleep 
(Fig. 3h–l). Theta power during REM sleep is also weaker compared to 
the younger participant. Despite these differences, characteristic sleep- 
stage patterns are still evident: alpha activity (8–12 Hz) dominates 
during wakefulness although here it extends also to lower frequencies 

Fig. 6. Group-average PSD plots. (a) PSDs from the E101 (Pz) electrode averaged over 40 overnight recordings. The PSDs were transformed to dB for visualization. 
Percentages in the legend represent the fraction of a sleep stage signal from the overall signal. (b) Average PSD of the N2 stage parametrized with SpecParam. The 
PSD values were log-transformed. Vertical green lines represent fitted peaks with central frequencies of ~8.06 and ~13.47 Hz, and their respective power above the 
aperiodic component of ~0.74 and ~0.97 log(uV2/Hz). PSD, power spectral density.
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below 8Hz (Fig. 3l), sigma (spindle) activity (12–15 Hz) appears during 
N2 and N3 sleep, and theta activity (4–8 Hz) is present during REM 
sleep, albeit with lower amplitude.

Thus, by comparing spectrograms and PSDs before and after clean
ing, the user can effectively form an initial impression of the data quality 
and the effectiveness of the cleaning process (and whether additional 
iterations may be needed). Overall, the “dashboard” provides a visual 
summary of a specific dataset, its cleaning/preprocessing, and markers 
attesting to its quality, which constitute a useful first step for the 
investigator before proceeding to detailed analysis.

3.2. Section B, analysis: the event-based and spectral-based tools

3.2.1. B1: Sleep spindle detection
To illustrate the event analysis tools (B1), we applied the YASA- 

based spindle detection in the N2 sleep of our representative dataset. 
Spindle detection provides an event-based analysis tool for character
izing sleep microstructure, allowing researchers to quantify spindle 
distribution and topography.

We used the default parameters of YASA, which include a 12–15 Hz 
spindle frequency range, 1–30 Hz broadband range, spindle duration 
between 0.5 and 2 s, and 500 ms as the minimal time interval for 
detecting two distinct spindles. The detection thresholds for a single 
spindle event were 0.2 relative power, 0.65 moving correlation, and 1.5 
STDs above the mean of a moving root-mean-square of the sigma- 
filtered signal. The signal was re-referenced to a common average 
reference. With these default parameters, we detected 48,057 spindles 
across all EEG channels, corresponding to an average of ~187 spindles 
per channel. Given that the duration of N2 sleep in this dataset was 193 
minutes, this reflects a detection rate of ~0.97 spindles/minute. This 
relatively low rate is reasonable, given that all 257 channels were 
included. Since spindles are mostly detected over midline scalp elec
trodes and some electrodes, such as lateral or facial electrodes, only have 
marginal detections, their inclusion is bound to lower the average rate. 
The average time course of the detected spindles aligned at the peak is 
shown in Fig. 4a. Fig. 4b depicts the average time-frequency decompo
sition (spectrogram) representation of the Pz (E101) channel, showing a 
slight decrease in spindle frequency from beginning to end. Fig. 4c 
shows the topographical signatures of different spindle characteristics 
(left, amplitude; middle, frequency; right, duration), revealing estab
lished phenomena such as the prevalence of slower (<13Hz) spindles in 
frontal electrodes vs. fast (>13 Hz) spindles over centroparietal 
electrodes.

3.2.2. B2: Spectral tool
We performed MNE-based spectral analysis for the entire dataset 

separately for each sleep stage and frequency band (slow/delta, theta, 
alpha, sigma, beta; see Methods). First, we reviewed and edited the 
default MNE parameters to set FFT and hamming window length to 2048 
samples and window overlap to 1024 samples.

The resulting topographical distributions of PSDs per frequency band 
per sleep stage averaged over all 40 subjects are shown in Fig. 5 and 
Table 2. In addition to typical activity signatures (described in Fig. 3b 
above), additional data features can be viewed and assessed here. For 
example, high-frequency beta activity is maximal during wakefulness; 
by contrast, delta activity during wakefulness shows hotspots around 
orbital electrodes due to saccades “injecting” power into this frequency 
range.

Finally, we display the average PSD plot as a function of the sleep 
stage across the entire dataset (N = 40) and apply parameterization to 
the PSDs (Fig. 6). As observed in the representative dataset shown in the 
“dashboard” (Fig. 3f), this plot reveals expected signatures of vigilance 
states such as SWA gradient N3>N2, diffuse theta activity in N1 and 
REM sleep, alpha activity in wakefulness, and maximal high-frequency 
(>20 Hz) activity in wakefulness. In addition, a peak in sigma activity 
was observed in the average PSD in N2/N3 sleep. This can also be 
demonstrated by identifying the periodic component’s peak frequency 
(~13.5 Hz) using SpecParam (Fig. 6b, rightmost vertical green line).

Comparison with EEGLAB. To assess the consistency of spectral 
outputs across toolkits, we visually compared the topographic distri
butions of spectral power generated by SleepEEGpy with those obtained 
using EEGLAB. Fig. 7 shows that the spatial patterns of EEG power in 
alpha (wake), sigma (N2), delta (N3), and theta (REM sleep) bands are 
highly similar between the two platforms. For example, both toolkits 
revealed occipital alpha activity during wakefulness, centrofrontal 
sigma and delta activity in N2 and N3, and widespread theta power in 
REM sleep. Note that differences in absolute power scaling between 
EEGLAB and SleepEEGpy likely reflect their respective approaches to 
averaging across variable-length time segments: SleepEEGpy uses a 
weighted average based on segment duration, while EEGLAB applies 
equal averaging.

4. Discussion

SleepEEGpy is an accessible and user-friendly tool for beginners in 
sleep EEG data analysis. It offers a comprehensive and user-friendly 
solution to support sleep EEG research from start to end by providing 
tools that enable preprocessing, analysis, and visualization of sleep EEG 
data. By leveraging the MNE-Python library and incorporating features 
from YASA, PyPREP, and SpecParam (formerly FOOOF), it combines the 
advantages of general-purpose tools with those of specialized tools. 
Researchers can benefit from various functionalities, including artifact 
removal, ICA, event detection, and spectral analyses.

4.1. Simplifying and standardizing sleep EEG analysis

Developed as a streamlined introduction, SleepEEGpy facilitates the 
learning curve for students and newcomers by unifying essential func
tionalities. New users should be able to run a standard pipeline without 
having to worry about the compatibility of data structures, coding 

Fig. 7. Comparison of spectral power topographies between EEGLAB and SleepEEGpy Topographic maps of EEG power in canonical frequency bands across 
sleep stages, generated using EEGLAB (left column) and SleepEEGpy (right column), using the same nap dataset. Rows correspond to specific combinations of sleep 
stage and frequency band: alpha (8–12 Hz) in wake, sigma (12–15 Hz) in N2, delta (0.5–4 Hz) in N3, and theta (4–8 Hz) in REM. All maps were computed after 
identical preprocessing steps.

Table 2 
EEG power across sleep stages. The first three columns represent the mean ± standard deviation of EEG power (μV2), averaged across three electrodes for each 
region: frontal (E21, E22, E14), central (E9, E81, E186), and occipital (E118, E126, E127), calculated from all 40 subjects. The last three columns show the p-values 
from independent t-tests comparing power between sleep stages.

Measure Wake NREM REM p(Wake vs NREM) p(Wake vs REM) p (NREM vs REM)

Occipital Alpha 12.67 ± 12.45 1.95 ± 1.24 1.86 ± 1.27 8.84e-07*** 7.44e-07*** 0.757
Frontal Delta 10.58 ± 9.00 67.53 ± 30.84 10.81 ± 5.53 1.62e-17*** 0.893 5.95e-18***
Central Sigma 0.86 ± 0.68 1.95 ± 1.24 0.55 ± 0.20 1.64e-10*** 0.006** 6.78e-16***
Frontal Theta 3.69 ± 2.56 67.53 ± 30.84 3.46 ± 1.55 4.02e-05*** 0.631 3.88e-07**
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errors, and arbitrary parameter definitions. Therefore, they can focus on 
understanding the general high-level steps of analyzing sleep data. 
Furthermore, SleepEEGpy can be used for learning and teaching specific 
steps. For example, the dashboard’s standardized visualization makes it 
easy and fast to assess the quality of the preprocessing. Hence, it can 
function as a useful tool to learn and improve manual preprocessing 
steps such as annotating bad epochs and bad electrodes.

4.2. A robust and flexible solution for sleep EEG exploration

We demonstrated a typical workflow of SleepEEGpy with continuous 
hd-EEG data from two healthy participants. With the dashboard (Fig. 3), 
we summarized and assessed the quality of the preprocessing. The 
minimal preprocessing included resampling, bandpass filtering, elec
trode interpolation, and epoch rejection. Finally, an ICA was applied to 
regress out the components related to electrocardiography/heartbeat. 
The processed data revealed typical EEG patterns for each vigilance 
state, which are consistent with prior literature. For example, the 
topographic distribution of power spectral density (PSD) for each vigi
lance state (wake, N2, N3, REM) mirrors established findings, such as 
the dominance of occipital alpha rhythm (8–12 Hz) during wakefulness, 
central sigma activity (12–15 Hz) in N2 sleep, frontal slow-wave activity 
(<4 Hz) in N3, and theta activity (4–8 Hz) during REM sleep. These 
results validate the preprocessing pipeline’s effectiveness and its align
ment with existing EEG research on sleep [63–65]. To showcase the 
flexibility of SleepEEGpy, we applied the same workflow to a dataset 
from an older adult. This participant displayed more frequent transitions 
between sleep stages, increased WASO, reduced slow-wave sleep, frag
mented REM, and weaker frontal delta and theta power, consistent with 
age-related changes in sleep [66,67]. SleepEEGpy effectively handled 
both young and older adult datasets, demonstrating its robustness and 
versatility for sleep research and clinical applications across diverse 
populations. We further illustrated that with SleepEEGpy, it is possible 
to reliably analyze events during sleep by detecting sleep spindles 
(Fig. 4). Specifically, we demonstrated its ability to detect spindles with 
typical frequency and topographical patterns. Slower spindles (<13 Hz) 
were observed in frontal regions, while faster spindles (>13 Hz) were 
found in centroparietal regions, which is consistent with findings in 
existing literature [54,68,69]. In addition, the decrease in spindle fre
quency during towards the end of the event aligns with previous findings 
[54]. Next, we presented group averages of the topographical distribu
tion of PSD per frequency band and sleep stage (Fig. 5, Table 2), high
lighting typical specific vigilance-state signatures activity patterns. 
Finally, we separately inspected the average PSD for each vigilance 
state, averaged across our participant cohort (Fig. 6), revealing clear 
peaks in activity associated with specific sleep stages, such as the 
characteristic sigma peak in N2/N3 sleep (~13.5 Hz). To further 
demonstrate that SleepEEGpy produces reliable outputs consistent with 
existing tools, we compared its output scalp topographies to those 
computed with EEGLAB using the same sleep EEG dataset. The spectral 
maps of key frequency bands across vigilance states (e.g., alpha in wake, 
sigma in N2) were nearly identical across both platforms (Fig. 7), sup
porting the validity of SleepEEGpy’s spectral pipeline. These results 
underscore the tool’s ability to capture nuanced spectral features across 
different vigilance states and sleep stages, contributing valuable insights 
into sleep dynamics. In summary, SleepEEGpy provides an easy way to 
perform general analysis and visualization of raw sleep EEG data, as well 
as overviews of group averages.

4.3. SleepEEGpy as an integrated solution beyond functionality of existing 
tools

The main advantages of SleepEEGpy relative to other available 
software tools are its simplicity and all-in-one functionality. Current 
EEG software packages are either implemented in MATLAB and behind a 
paywall [28,29,34–36,38,39], optimized for sleep EEG but restricted to 

either preprocessing [48], sleep scoring [70], or specific analyses [44], 
or based on Python but not necessarily optimized for sleep research 
[30]. This often results in the need for researchers to combine multiple 
software environments to work with sleep EEG data, which can 
complicate the workflow. Thus, SleepEEGpy helps to address an unmet 
need by providing a comprehensive package that goes beyond the 
typical configuration in many labs and combines multiple software en
vironments to work with sleep EEG data. Its free open-source nature 
ensures accessibility to students and sleep research labs. To complement 
the discussion, an explicit comparison of core features across popular 
EEG software tools is provided in Table 1. This overview highlights 
SleepEEGpy’s unique balance of automation, scalability, and ease of use, 
particularly its support for sleep-specific preprocessing, event detection, 
and visualization in a single streamlined pipeline. Beyond traditional 
sleep research, SleepEEGpy also holds potential for interdisciplinary 
applications. Because it’s designed to work end-to-end, from raw data to 
high quality figures, it can be easily adapted to other domains such as 
cognitive neuroscience, psychiatry, and neuroengineering - anywhere 
where sleep-related dynamics and EEG are relevant. For example, it 
could support clinical studies investigating sleep disruptions in psychi
atric populations, research on cognitive performance following sleep 
interventions, or experiments using wearable EEG devices in real-world 
settings. By lowering the entry barrier for high-quality EEG analysis, 
SleepEEGpy opens up opportunities for collaborations between 
computational scientists, clinicians, educators, and behavioral 
researchers.

In terms of features, SleepEEGpy enables semi-automated process
ing, offering an end-to-end pipeline for sleep EEG analysis. After pre
processing, the pipeline provides a standardized dashboard for dataset 
validation before proceeding to further analysis. Moreover, built-in 
spectral analysis tools allow users to examine data across multiple pa
tients in a single workflow, enhancing its applicability for large-scale 
studies. Regarding usability, SleepEEGpy is fully open-source and 
freely available, ensuring accessibility to researchers at all levels. It of
fers a complete sleep EEG processing pipeline, allowing beginners to 
perform analyses with minimal setup using default parameters (e.g., 
filter type or spindle detection threshold). At the same time, the 
framework is flexible, enabling experienced users to adjust settings or 
integrate additional functionality as needed. By addressing these as
pects, SleepEEGpy offers a robust solution that simplifies sleep EEG 
analysis while maintaining flexibility for advanced research.

In terms of performance, SleepEEGpy’s processing speed and effi
ciency are comparable to existing Python-based tools, such as YASA and 
MNE, since it builds on established libraries. Unlike many existing tools 
that rely on pre-segmented epochs, the pipeline processes raw contin
uous EEG data throughout. This approach, while computationally more 
demanding, ensures a more consistent preprocessing workflow and 
avoids artificial interruptions caused by segmentation. However, actual 
performance may vary depending on the hardware used, especially with 
high-density, long-duration sleep EEG recordings.

4.4. Ease of use

Getting started with SleepEEGpy requires only basic knowledge of 
Python syntax and Jupyter notebooks. The pipeline is based primarily on 
classes and their methods, and the most complex task an average user 
might encounter is writing a ‘for’ loop to optimize their pipeline. Jupyter 
notebooks are implemented for each stage of the pipeline, making the 
tools nearly automatic with embedded explanations at each step. The 
code repository and notebooks are available at https://github.com/Ni 
rLab-TAU/sleepeegpy, where a dedicated notebook (the “complete 
pipeline” notebook) enables users to download the example datasets and 
replicate our results. SleepEEGpy is also accompanied by a webpage 
providing detailed API documentation and published notebooks. The 
documentation is built using Sphinx [71] and hosted on GitHub. 
Example datasets, including a full-night and a nap recording from young 
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adults and a full-night recording from an older adult, can be found at 
Zenodo [72]: 10.5281/zenodo.10362190. Additionally, the “complete 
pipeline” notebook provides an end-to-end example of dataset retrieval, 
preprocessing, and analysis.

4.5. Limitations and future directions

SleepEEGpy could be improved by including additional analysis 
methods, for example, a module for statistical analysis (parametric and 
non-parametric tests) or a module for source estimation, which would 
broaden the scope of its functionality for advanced users. While the 
current version supports various sleep data types, its data type 
compatibility could also be further extended, particularly with the EEG- 
BIDS data structure [73], to better accommodate the growing adoption 
of this standardized format. We believe that the code availability and 
free software licenses (SleepEEGpy is released under the MIT license) 
allow the community to rapidly expand such functionalities.

Additionally, SleepEEGpy has the potential to be extended with more 
functionality based on machine learning and deep learning algorithms 
for prediction and classification tasks, such as identifying pathological 
events during sleep [74] or discovering biomarkers for neuropsychiatric 
disorders [75]. Recent advancements in these fields, including applica
tions in medical imaging, disease diagnosis, and physiological signal 
analysis [76–81], highlight their potential for EEG research. In line with 
these advancements, deep learning and complex network approaches 
have shown promise in EEG-based brain state classification and neuro
logical research [82,83], while statistical feature selection techniques 
improve EEG-based classification accuracy [84]. Additionally, advanced 
simulation-based frameworks, such as Monte Carlo methods [85–88], 
could be adapted to further refine EEG source modeling or artifact 
detection in SleepEEGpy. By integrating these techniques, SleepEEGpy 
could enhance sleep EEG analysis, providing more accurate and 
personalized insights into sleep dynamics and neuropsychiatric 
disorders.

An additional limitation is the required knowledge of MNE and YASA 
for more advanced analyses. At present, if the analysis prompts for an 
adjustment of a meta-parameter (e.g., spindle detection threshold or 
specific bandpass filtering), the details are best described in the docu
mentation of MNE or YASA itself, which might be challenging for new 
users. However, for a new user, the defaults should be sufficient to get to 
know the processing of sleep EEG. This represents a trade-off between 
user-friendliness and the flexibility offered by specialized tools. All these 
limitations could be addressed with additional code and documentation. 
Hence, we hope that this package will be further developed by the 
growing community of sleep investigators committed to open science 
and high-quality open-source software. With the increased use of Python 
as the preferred programming language and its interface with machine- 
learning tools, we envision SleepEEGpy as an ideal entry point to 
become familiar with sleep EEG analysis.

5. Conclusion

SleepEEGpy provides a user-friendly and comprehensive framework 
for sleep EEG analysis, integrating preprocessing, event detection, and 
spectral analysis in a single pipeline. By leveraging existing Python- 
based tools, it streamlines workflows for both novice and experienced 
researchers, ensuring accessibility and flexibility. Our results demon
strate its ability to effectively process and analyze sleep EEG data across 
different age groups, capturing key sleep dynamics and spectral features 
consistent with prior literature. As an open-source package, SleepEEGpy 
addresses the need for an all-in-one sleep EEG tool, with the potential for 
further expansion through community contributions.
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[22] İ. Kaya, A brief summary of EEG artifact handling, in: Brain-Computer Interface, 
IntechOpen, 2021, https://doi.org/10.5772/intechopen.99127.

[23] M.X. Cohen, Analyzing Neural Time Series Data, MIT Press, 2014, https://doi.org/ 
10.7551/mitpress/9609.001.0001.

[24] A. Delorme, EEG is better left alone, Sci. Rep. 13 (1) (2023), https://doi.org/ 
10.1038/s41598-023-27528-0.

[25] B.A. Riedner, V.V. Vyazovskiy, R. Huber, M. Massimini, S. Esser, M. Murphy, 
G. Tononi, Sleep homeostasis and cortical synchronization: III. A high-density EEG 
study of sleep slow waves in humans, Sleep 30 (12) (2007) 1643–1657, https://doi. 
org/10.1093/sleep/30.12.1643.

[26] R.K. Das, A. Martin, T. Zurales, D. Dowling, A. Khan, A survey on EEG data analysis 
software, Science 5 (2) (2023), https://doi.org/10.3390/sci5020023.

[27] F. Tadel, S. Baillet, J.C. Mosher, D. Pantazis, R.M. Leahy, Brainstorm: a user- 
friendly application for MEG/EEG analysis, Comput. Intell. Neurosci. 2011 (2011) 
e879716, https://doi.org/10.1155/2011/879716.

[28] A. Delorme, S. Makeig, EEGLAB: an open source toolbox for analysis of single-trial 
EEG dynamics including independent component analysis, J. Neurosci. Methods 
134 (1) (2004) 9–21, https://doi.org/10.1016/j.jneumeth.2003.10.009.

[29] R. Oostenveld, P. Fries, E. Maris, J.-M. Schoffelen, FieldTrip: open source software 
for advanced analysis of MEG, EEG, and invasive electrophysiological data, 2010, 
Comput. Intell. Neurosci. (2011) e156869, https://doi.org/10.1155/2011/ 
156869.

[30] A. Gramfort, MEG and EEG data analysis with MNE-Python, Front. Neurosci. 7 
(2013), https://doi.org/10.3389/fnins.2013.00267.

[31] S. Huberty, J. Desjardins, T. Collins, M. Elsabbagh, C. O’Reilly, PyLossless: a non- 
destructive EEG processing pipeline, bioRxiv (2024), https://doi.org/10.1101/ 
2024.01.12.575323.

[32] N.W. Bailey, M. Biabani, A.T. Hill, A. Miljevic, N.C. Rogasch, B. McQueen, O. 
W. Murphy, P.B. Fitzgerald, Introducing RELAX: an automated pre-processing 
pipeline for cleaning EEG data - Part 1: algorithm and application to oscillations, 
Clin. Neurophysiol. 149 (2023) 178–201, https://doi.org/10.1016/j. 
clinph.2023.01.017.

[33] N. Bigdely-Shamlo, T. Mullen, C. Kothe, K.-M. Su, K.A. Robbins, The PREP pipeline: 
standardized preprocessing for large-scale EEG analysis, Front. Neuroinf. 9 (2015) 
16, https://doi.org/10.3389/fninf.2015.00016.

[34] S. Blum, N.S.J. Jacobsen, M.G. Bleichner, S. Debener, A riemannian modification of 
artifact subspace reconstruction for EEG artifact handling, Front. Hum. Neurosci. 
13 (2019) 141, https://doi.org/10.3389/fnhum.2019.00141.

[35] J.R. da Cruz, V. Chicherov, M.H. Herzog, P. Figueiredo, An automatic pre- 
processing pipeline for EEG analysis (APP) based on robust statistics, Clin. 
Neurophysiol. 129 (7) (2018) 1427–1437, https://doi.org/10.1016/j. 
clinph.2018.04.600.

[36] L.J. Gabard-Durnam, A.S. Mendez Leal, C.L. Wilkinson, A.R. Levin, The harvard 
automated processing pipeline for electroencephalography (HAPPE): standardized 
processing software for developmental and high-artifact data, Front. Neurosci. 12 
(2018), https://doi.org/10.3389/fnins.2018.00097.

[37] M. Jas, D.A. Engemann, Y. Bekhti, F. Raimondo, A. Gramfort, Autoreject: 
automated artifact rejection for MEG and EEG data, Neuroimage 159 (2017) 
417–429, https://doi.org/10.1016/j.neuroimage.2017.06.030.

[38] A. Mognon, J. Jovicich, L. Bruzzone, M. Buiatti, ADJUST: an automatic EEG 
artifact detector based on the joint use of spatial and temporal features, 
Psychophysiology 48 (2) (2011) 229–240, https://doi.org/10.1111/j.1469- 
8986.2010.01061.x.

[39] H. Nolan, R. Whelan, R.B. Reilly, FASTER: fully automated statistical thresholding 
for EEG artifact rejection, J. Neurosci. Methods 192 (1) (2010) 152–162, https:// 
doi.org/10.1016/j.jneumeth.2010.07.015.

[40] R. Somervail, J. Cataldi, A.M. Stephan, F. Siclari, G.D. Iannetti, Dusk2Dawn: an 
EEGLAB plugin for automatic cleaning of whole-night sleep electroencephalogram 
using Artifact Subspace Reconstruction, Sleep (2023), https://doi.org/10.1093/ 
sleep/zsad208.

[41] D.C. ’t Wallant, V. Muto, G. Gaggioni, M. Jaspar, S.L. Chellappa, C. Meyer, 
G. Vandewalle, P. Maquet, C. Phillips, Automatic artifacts and arousals detection in 
whole-night sleep EEG recordings, J. Neurosci. Methods 258 (2016) 124–133, 
https://doi.org/10.1016/j.jneumeth.2015.11.005.
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