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Annotated interictal discharges 
in intracranial EEG sleep data and 
related machine learning detection 
scheme
Rotem Falach1,2, Maya Geva-Sagiv3,4, Dawn Eliashiv5, Lilach Goldstein6,7, Ofer Budin1,2, 
Guy Gurevitch2,8, Genela Morris9, Ido Strauss7,9, Amir Globerson10, Firas Fahoum   6,7, 
Itzhak Fried3,7,11 & Yuval Nir1,2,8,12,13 ✉

Interictal epileptiform discharges (IEDs) such as spikes and sharp waves represent pathological 
electrophysiological activities occurring in epilepsy patients between seizures. IEDs occur preferentially 
during non-rapid eye movement (NREM) sleep and are associated with impaired memory and cognition. 
Despite growing interest, most studies involving IED detections rely on visual annotations or employ 
simple amplitude threshold approaches. Alternatively, advanced computerized detection methods are 
not standardized or publicly available. To address this gap, we introduce a novel dataset comprising 
multichannel intracranial electroencephalography (iEEG) data recorded at two medical centers during 
overnight sleep with IED annotations performed by expert neurologists. Utilizing these annotations 
to train machine learning models via a gradient-boosting algorithm, we demonstrate automated IED 
detection with high precision (94.4%) and sensitivity (94.3%) that can generalize across individuals 
and surpass performance of a leading commercial software. The dataset featuring multi-channel 
annotations with sub-second resolution including hippocampus and medial temporal lobe (MTL) regions 
is made publicly available, together with the detection algorithm, to advance research on detection 
methodology, epilepsy, sleep, and cognition.

Background & Summary
Epilepsy is a common neurological condition present in approximately 50 million people worldwide1,2 that 
affects brain activity and leads to seizures. In addition to seizures, interictal epileptiform discharges (IEDs) 
are pathological electrophysiological events observed between seizures in patients with epilepsy. These events 
include spikes, poly-spikes, sharp waves, or spike and slow wave (spike-wave) complexes that last 20–70 ms for 
an interictal spike or 70–200 ms for sharp waves3. IED can appear several times per minute (much more fre-
quently than seizures) and their rate varies depending on the pathology, age, vigilance state, drug therapy, circa-
dian time, and other factors4–9. The prevalence of IED has been associated with long-term cognitive impairment, 
such as impaired language abilities or memory loss10–13. Although for a long while their clinical significance was 
debated14, precise localization of IED can aid diagnosis by suggesting a particular epilepsy syndrome or helping 
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to identify the seizure onset zone (SOZ), a procedure that can be crucial in patients with drug-resistant epilepsy 
considered for resective epilepsy surgery15,16.

In many types of epilepsy, pathological activity including seizures and IED occur preferentially during 
sleep17–19. Indeed, sleep is a potent physiological modulator of epileptic activity. Specifically, non-rapid eye 
movement (NREM) sleep, which comprises ~80% of sleep time in adults, is characterized by high neuronal 
synchrony at low (<4 Hz) frequencies, which increases with increasing sleep depth. Slow wave sleep (SWS), also 
known as N3 sleep, displays the highest degree of physiological synchronization within the brain20. Mechanisms 
facilitating slow wave activity, such as the reduction of cholinergic neuromodulation that normally leads to 
cortical de-correlation21, may concurrently serve as catalysts for the onset of pathological occurrences like IEDs 
and seizures. Indeed, IEDs occur maximally during NREM sleep whereas they show low rates and minimal spa-
tial spread during REM sleep and wakefulness22. Thus, detection of IEDs during sleep represents an important 
challenge that holds significant value for both research and clinical purposes.

The detection of IEDs serves as an initial milestone in any investigation for basic research or clinical eval-
uation. In mesial temporal lobe epilepsy (MTLE) patients, the seizure onset zone and IEDs occur primarily in 
deep limbic regions such as the medial temporal lobe (MTL). In such cases, intracranial EEG (iEEG) recorded 
from implanted depth electrodes often serves as a useful diagnostic procedure for drug-resistant epilepsy and 
is widely used to detect IEDs in patients with a known history of seizures. However, the lack of an objective 
definition of IEDs can cause disagreement even among EEG experts, and inter-observer reliability often hin-
ders EEG interpretation23,24. One of the possible sources of classification errors is that IED morphology varies 
between subjects, due to different IED sources and brain pathologies. Visual annotation of IEDs by neurologists, 
although time-consuming and requiring extensive training, is considered the gold standard25. However, expert 
experience, as well as clinical softwares (e.g. “Persyst”) are mostly based on scalp EEG, and there are fewer clear 
definitions for intracranial recordings. Furthermore, the growing number of intracranial studies, incorporating 
continuous recordings from Deep Brain Stimulation (DBS) devices, emphasizes the increasing need for accurate 
IED detection from iEEG signals.

Recent studies have explored various methodologies for identifying IEDs, ranging from template match-
ing to frequency domain methods and beyond26. While these methods are extensively employed, the contro-
versy surrounding their validation and comparison persists, primarily stemming from the absence of definitive 
ground-truth data. Aligned with this objective, this paper aims to furnish a cohesive dataset of iEEG sleep 
recordings from two different medical centers along with expert annotations of IEDs timings in Brain Imaging 
Data Structure (BIDS)27,28, a format that is both accessible and user-friendly.

In order to demonstrate the validity of this dataset, and its potential to generalize to other patients’ record-
ings, we employed a machine learning (ML) algorithm to detect the IEDs and performed analysis of the detected 
results. While ML techniques have become increasingly prevalent in this domain, a notable gap exists in the 
literature concerning the utilization of gradient-boosting algorithms29 for IED detection. Gradient Boosting 
currently stands as a frontrunner in the field of classical ML based on feature extraction30. Its significant advan-
tages in terms of resource efficiency and result interpretability distinguish it from neural networks. As the field 
of feature-based ML keeps improving, the incorporation of gradient boosting into the realm of IED detection 
holds the potential to significantly enhance both the accuracy of predictions and the understanding of underly-
ing patterns in intracranial EEG data.

To the best of our knowledge, the current dataset marks the first iEEG sleep dataset offering expert-annotated 
iEEG signals with a sub-second resolution that is made freely available. Furthermore, we utilized state-of-the-art 
ML techniques to develop and validate an automated system for detecting IEDs in intracranial EEG during sleep. 
In contrast to the variability associated with manual annotations by clinical personnel, automated computational 
tools hold promise in establishing new benchmarks for sensitivity and objectivity and advancing methodologies 
within the field.

Methods
Participants.  25 drug-resistant epilepsy patients were implanted with depth iEEG electrodes as part of clini-
cal evaluation for seizure foci identification and potential surgical treatment. Electrode locations were based solely 
on clinical criteria. All patients provided written informed consent to participate in the research study, under the 
approval of the Institutional Review Board at the Tel Aviv Sourasky Medical Center (TASMC, 9 patients), or the 
Medical Institutional Review Board at the University of California, Los Angeles (UCLA, 16 patients). In their 
consent, patients explicitly agreed for anonymized data to be shared and used in future scientific publications. 
UCLA Hospital IRB protocol: 10-000973, TLVMC IRB protocol: TLV-008-12. Participants recruited for the study 
were patients at UCLA (2007–2012, 2017–2021) or TASMC (2017–2023) who volunteered to participate in an 
overnight sleep research recording session.

EEG Recordings.  For each patient, depth electrodes were placed in different regions according to clinical 
needs. Each depth electrode consisted of platinum iEEG contacts along the shaft. iEEG data were continuously 
recorded using Blackrock system throughout sleep referenced to a central scalp electrode and sampled at 2KHz 
(Figs. 1A, 2A). Channel selection was based on availability (Table 1), without consideration of IED presence. 
Channel names consist of an initial letter indicating the hemisphere (R = right, L = left), followed by 1–3 letters 
representing the brain region (A = amygdala, EC = entorhinal cortex, AH = anterior hippocampus, etc. A full list 
of channel abbreviation definitions is included in the dataset), and a number starting from 1, denoting the most 
mesial contact and increasing as it moves laterally. In addition, in 15 patients sleep scoring employed additional 
non-invasive simultaneous polysomnography using EEG channels from the C4 (right vertex), C3 (left vertex), and 
Pz (central parietal) derivations, electrooculogram channels (EOG1, EOG2), and chin electromyogram (EMG).

https://doi.org/10.1038/s41597-024-04187-y


3Scientific Data |         (2024) 11:1354  | https://doi.org/10.1038/s41597-024-04187-y

www.nature.com/scientificdatawww.nature.com/scientificdata/

Sleep staging.  Manual sleep scoring was performed according to the established guidelines of the American 
Academy of Sleep Medicine31 facilitated by the sleep module within the Visbrain Python package32. EEG scalp 
electrodes were utilized whenever feasible; The data underwent resampling to 250 Hz and were visualized in 
30-second epochs, accompanied by at least one synchronized EOG signal from electrodes placed above and below 
the eyebrows, and optionally an EMG signal from a submental electrode33,34. Verification of successful scoring was 
further corroborated by inspecting the time-frequency representation, depicted in Fig. 1D. In cases where only 
iEEG data were available, a validated automatic algorithm35,36 was employed to detect NREM in neocortical chan-
nels based on slow-wave and sleep spindle occurrence, while all the other epochs were marked as “wake/REM”.

Electrode localization.  Pre-implantation, patients underwent T1-weighted MRI scans using a 3-Tesla scan-
ner, providing detailed structural information. Post-implantation, CT scans were conducted and integrated with 
the pre-operative MRIs, and individual recording sites were visually identified and manually marked within each 
participant’s native MRI space using BioImage37, FreeSurfer38, and iELVIS39. Finally, the data from each subject 
were converted into a common brain average space (MNI) and visualized using NetPlotBrain40 (Fig. 1C). In 
instances where precise coordinate data were unavailable (112 electrodes from 7 patients), we utilized the average 
coordinates derived from all other patients for each channel.

Manual annotations.  iEEG data underwent assessment by two neurologists. The first neurologist (D.E.) 
completed a fellowship in Clinical Neurophysiology and Epilepsy at UCLA, is now a Professor of Neurology at 
UCLA, Co-Director of the UCLA Seizure Disorders Center, and Director of the Clinical Neurophysiology and 

Fig. 1  Experimental data. (A) Raw data example from patient 12. The montage contains both hemisphere 
iEEG channels from most mesial to most lateral, from top to bottom: RA1-RA5 in black, REC1-REC5 in blue, 
RAH1-RAH5 in red, LA1-LA5 in green, LEC1-LEC5 in pink and LAH1-LAH5 in brown. Annotation examples 
of right hemisphere IED marked by the two left orange shades and left hemisphere IED marked by the right 
orange shade. Gray vertical lines represent 1 second and amplitude was auto-adjusted to best visualize IEDs. (B) 
Bar plot displays the rate of IEDs per minute in patient recordings. The bars are divided into left (blue) and right 
(green) hemispheric activity. Patients are sorted by total IEDs rate. (C) Visualization of electrode placements 
overlaid on a standard brain model, where color intensity corresponds to the frequency of patients recorded for 
each specific channel. Top: left and right hemisphere, bottom: superior view. (D) Time-frequency representation 
(spectrogram) of C3 electrode recorded in subject 14 during a full night sleep study. Warm colors indicate 
increased power in specific time-frequency windows (see color bar on the right, frequency on the left y-axis). 
Black trace marks the hypnogram, time-course of sleep-wake stages in one representative individual. W, wake; 
R, REM sleep; N1-N3, NREM sleep, stages 1–3.
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Epilepsy Training Program; D.E. reviewed a full montage of all intracranial channels for 10 UCLA patients. The 
second neurologist (L.G.) completed a clinical fellowship in Epilepsy and Clinical Neurophysiology at the Thomas 
Jefferson Epilepsy Center and is currently an attending physician at the EEG and Epilepsy Unit in TLVMC; L.G. 
assessed the other 15 patients. This neurologist reviewed a montage of the three most medial channels in the MTL 
probes (bilateral anterior hippocampus, amygdala, and entorhinal cortex), re-referenced offline to an additional 
EEG channel. Neurological annotation and assessment primarily employed a scalp reference montage, which was 
also exclusively used for any subsequent machine-learning based detections. In addition, for neurological anno-
tations in patients who only had MTL signals we included an additional bipolar reference to facilitate easier data 
inspection and enhance confidence in the annotations. Conversely, for patients with many channels across mul-
tiple lobes (including MTL, lateral, frontal, etc.), an additional bipolar reference was not added, as this resulted in 
an excessive number of channels for neurologists to examine simultaneously. The visual analysis for IEDs was con-
ducted based on the criteria for interictal epileptiform discharges as published by the International Federation of 
Clinical Neurophysiology, with relevant considerations for intracerebral recording specified by B. Frauscher et al.41.  
The expert neurologists, blinded to the patient’s clinical profile, identified and tagged 852 interictal activity epochs 
using Nicolet Reader software (Natus, USA) or Persyst software (Figs. 1B, 2B). Each IED tag was annotated with 
a specific timestamp and the brain location of abnormal activity. Further analysis involved visually inspecting the 
montage and converting each annotation into a list of specific channels where the IEDs were observed (Fig. 2C). 
To assess the inter-rater reliability of the annotations, we calculated the Cohen’s Kappa score for a subset of six 
patients each annotated independently by the two expert neurologists (where each neurologist also annotated 
three iEEG recordings from the other medical center, to facilitate cross-hospital comparisons). We compared the 
annotation timings with a 1-second resolution and computed the Kappa score to quantify agreement between the 
two raters. The average Kappa score for the original dataset was 0.63 ± 0.23, while the balanced dataset achieved 
a score of 0.71 ± 0.24, which is consistent with findings in previous literature42.

Data Records
The dataset is available at Figshare: https://doi.org/10.6084/m9.figshare.2613197843. Overall, our study involves 
1–5 minutes of data per patient (N = 25), comprising a total of 857 iEEG channels (Table 1) and 76 minutes of 
data, along with precise sub-second timings of 852 IEDs annotated by expert neurologists. The dataset is organ-
ized by patient, with each patient’s data stored in a separate folder. The root folder contains a “participants” file 
containing clinical information such as participant age, sex and seizure onset zone (SOZ), and a readme file 
with a brief summary of the dataset. Within each patient’s folder, there are files for raw data, annotations, elec-
trode information (coordinates available for 18 patients), and a metadata JSON containing additional details 
such as power line frequency, time from sleep onset (available for 22 patients), and a sleep scoring vector in 
30-second resolution (available for 15 patients). The derivatives folder includes a channels file with channel 
abbreviation definitions and TSV files containing the relevant channels corresponding to each annotation. All 
file names follow a consistent BIDS naming convention, reflecting the type of data and the patient ID, to ensure 
easy navigation.

Technical Validation
Detection model.  The detection model underwent several stages (Fig. 3A). iEEG signal (in each channel 
that contained at least one IED annotation) was resampled to 1 kHz, band-pass filtered digitally between 0.1 Hz 
and 500 Hz, and subjected to a notch filter at 50/60 Hz to eliminate residual line noise offline. Next, Z-score nor-
malization was applied to the raw channels and time-courses were segmented into 250 ms epochs, where each 
segment was categorized as either abnormal (IED occurrence) or normal, based on neurologist assessment. Each 
epoch comprised a vector of 250 time points, facilitating the extraction of the 14 best features out of all mne-fea-
tures44 and Antropy package in terms of speed and accuracy, including kurtosis, entropy, teager-kaiser energy 
parameters45, peak-to-peak amplitude, Hjorth complexity and mobility46. In addition, we added two features of 
kurtosis and peak-to-peak amplitude that represent the channel properties. Initially, all 104 univariate features 
available in the MNE-features package were extracted, and the model was trained using the full feature set. We 
then refined the feature set using various feature importance metrics, including feature gain and frequency, per-
mutation importance, and SHAP values (that quantify each feature's impact on a model's prediction)47. After 
several iterations, we reduced the number of features to optimize performance, ultimately replacing three features 
with those from the Antropy package to enhance processing speed while maintaining model accuracy.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

Hippocampus V V V V V V V V V V V V V V V V V V V V V V V V

Amygdala V V V V V V V V V V V V V V V V V V V V V

Entorhinal cortex V V V V V V V V V V V V V V V

Parahippocampal gyrus V V V V V V V V V V V

Frontal lobe V V V V V V V V V

Lateral temporal V V V V V V

insula V V V V V

Occipital lobe V

Table 1.  Recorded regions. The table lists the specific brain regions recorded via iEEG electrodes for each 
patient. Regions with a “V” indicate where recordings were successfully obtained and reviewed by a neurologist.
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For model training and model evaluation purposes, we employed random under-sampling to balance the 
data, ensuring an equal number of epochs with and without IEDs. Balancing the data is crucial to prevent the 
model from being biased toward the majority class (non-IED epochs), which could result in poor performance 
and inaccurate evaluation metrics. Furthermore, under-sampling allowed us to train on more channels and 
increased the variability of IEDs in the training set, enhancing the model’s generalization without compromising 
key metrics. Although over-sampling techniques like SMOTE48 resulted in a higher F1 score, they produced a 
lower PRAUC. When comparing the original ratio model performance with under-sampled models at a 1:10 
ratio, the original ratio yielded the lowest PRAUC, while the balanced and 1:10 ratios performed similarly but 
exhibited variability in other metrics. These findings underscore that different sampling strategies can affect var-
ious metrics in distinct ways, making it essential to understand the biases each approach introduces. Depending 
on the task, one might prioritize maximizing sensitivity over precision or vice versa. In the end, we opted for 
under-sampling due to its simplicity and ability to deliver clean, reliable results. This approach leverages only real 
data, making it more straightforward and offering robust, interpretable metrics. First, a 5-fold cross-validation 
was employed, randomly dividing the data into five non-overlapping folds, with one fold serving as the test set 
while the others were used for training the light gradient boosting machine (LGBM) algorithm49. Performance 
metrics such as accuracy, precision, sensitivity, specificity, F1 score, area under the curve of the receiver oper-
ating characteristic (AUCROC), and area under the curve of the precision-recall curve (AUCPR) were com-
puted for each test fold, with the average of all folds considered as the final result. Next, feature importance was 
determined using the SHAP algorithm, elucidating the contribution of each feature to the model’s output and 
enhancing interpretability. We used the SHAP results to choose the top features with additional consideration of 
calculation speed to make the model faster and easier to use. Finally, a generalization test was conducted using 
the “leave one out” (LOO) method, wherein a specific subject’s data were withheld from the training dataset to 
assess the model’s performance on unseen data. To ensure algorithm quality even further, we tested the model’s 
generalizability between different annotators, by training the model on one expert data and test on the other. 
Additionally, we compared the model’s performance in the LOO test against both the clinical software and a 
multi-threshold algorithm commonly used in iEEG studies35,50. This method detects IEDs by identifying events 

Sleep Recording
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Reformat and Export
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Offline Examination

B

Right Left
Bi-A M-REC

Annotation Examples

Subject 8
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Fig. 2  Dataset generation process. (A) Epilepsy patients implanted with depth electrodes were 
connected to an iEEG acquisition system for clinical monitoring during sleep. (B) The recorded signals 
underwent offline examination by a neurologist using clinical software. Bottom: annotation examples 
from two patients and annotators. PHG = parahippocampal gyrus, Bi-A = bi-synchronous amygdala, 
M-REC = mesial right entorhinal cortex. (C) The final dataset contains raw data and IEDs annotations 
exported into BIDS format.
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Fig. 3  ML approach for data validation. (A) A diagram illustrating the steps involved in model implementation 
and evaluation, encompassing data segmentation, feature extraction, and performance evaluation through 
k-fold cross-validation and leave-one-out generalization tests. (B) Detection examples obtained from different 
patients using leave-one-out test. Each signal showcases a duration of 7 seconds from a specific channel. True 
positives are highlighted with a green background, false negatives with a pink background, false positives with 
an orange background, and true negatives with a white background. (C) Top: K-fold cross-validation metrics. 
Each point corresponds to a different testing fold excluded from the training dataset. Bottom: Leave-one-out 
generalization test results. Each point corresponds to a patient excluded from the training dataset. The LGBM 
model’s results are represented in blue, while clinical software results are depicted in orange, and the multi 
threshold algorithm results are in red. The median is denoted by a black horizontal line, and the mean by a 
black diamond. (D) Feature importance is illustrated by SHAP values sorted by the sum of the SHAP value 
magnitudes across all samples. (E) Various examples of IED morphologies are showcased through Event-
Related Potentials (ERP) obtained from different channels.
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where the envelope of the high-pass filtered (>250 Hz) time-course exceeds a +5 SD threshold or where both 
the amplitude and gradient surpass a +5 SD threshold, as well as a duration criterion (shorter than 70 ms). To 
this end, we performed automatic detection by the algorithm and the software on each channel. We exported 
annotations with one-second precision and converted the neurologist’s annotations to the same precision for a 
proper comparison. We then balanced the ratio between normal and abnormal epochs, and calculated the soft-
ware metrics in the same approach as for our model, employing the scikit-learn python package.

The 5-fold cross-validation average metrics are: accuracy = 94.3, precision = 94.4, sensitivity = 94.3, spec-
ificity = 94.4, f1 score = 94.3, ROCAUC = 94.3, PRAUC = 91.8 (Fig. 3C, top). The LOO test average metrics 
are accuracy = 91.2, precision = 91.2, sensitivity = 86.7, specificity = 93.1, f1 score = 87.5, ROCAUC = 89.9, 
PRAUC = 85.1, and the generalizability test achieved accuracies of 86% and 89%, indicating good generaliz-
ability across annotations from different experts and datasets from different medical centers. In addition, we 
found that our model outperformed the clinical software and the multi threshold algorithm (Fig. 3C, bottom). 
Notably, the software was trained on non-invasive data, making it likely less relevant for this purpose. SHAP 
analysis identified the top features as peak-to-peak amplitude, entropy and teager-kaiser parameters (Fig. 3D).

Event-related potential (ERP) of detected IEDs.  In addition to quantitative metrics assessing the mod-
el’s performance, and to demonstrate potential utilization of the dataset and the detection method, we conducted 
additional analysis by generating a typical waveform for each channel using data recorded throughout the entire 
night. We applied the detection model to all channels of each patient, after manually excluding noisy channels. 
Detected epochs with model confidence higher than 80% were expanded to include 125 ms before and after the 
original 250 ms window, and centered around the peak that was identified by the highest amplitude. The duration 
of each event was calculated as the time between half amplitude before the peak and half amplitude after the 
peak51. Only events with a duration of 20–100 ms and amplitude of at least 3 STD were used for subsequent anal-
ysis. Finally, average event-related potentials were generated for each channel (Fig. 3E).

Usage Notes
The dataset is available in BIDS format, encompassing all essential information required for researchers to con-
duct their analyses using any software platform.

Code availability
Scripts demonstrating usage and code employed for preparing, preprocessing, and technically validating the 
dataset are openly accessible at: https://github.com/NirLab-TAU/iEEG_ied_detection.
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