We reconsider sleep/wake brain states as being highly dynamic and regionally complex, rather than stationary and global. We review recent evidence for spatiotemporal complexity and advances in understanding the systems that regulate vigilance state, such as neuromodulatory systems – which may be more heterogenous than originally assumed. A modular and dynamic perspective highlights novel avenues for spatiotemporal optimization of sleep/wake states and has implications for how we view brain states, their functional roles, and how to design future experiments.